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Abstract

In the paper a new method to solve the tree-dimensional reference interaction site model
(3DRISM) integral equations is proposed. The algorithm uses the multi-grid technique which
allows to decrease the computational expanses. 3DRISM calculations for aqueous solutions
of four compounds (argon, water, methane, methanol) on the different grids are performed in
order to determine a dependence of the computational error on the parameters of the grid.
It is shown that calculations on the grid with the step 0.05Å and buffer 8Å give the error of
solvation free energy calculations less than 0.3 kcal/mol which is comparable to the accuracy
of the experimental measurements. The performance of the algorithm is tested. It is shown
that the proposed algorithm is in average more than 12 times faster than the standard Picard
direct iteration method.

1 Introduction

Integral equation theory of liquids (IETL) is an effective method for the prediction of the structural
and thermodynamic parameters of liquid and amorphous matter [1, 2]. IETL describes the stucture
of the liquid by using the correlation functions. The main equation of IETL is the Ornstein-
Zernike (OZ) equation which for the case of molecular liquids connects the correlation functions
of six independent variables [1]. Because of the comutational complexity solving the OZ equation
in a general case is still an open task. In practice one uses approximate models, such as the
reference interaction site model (RISM) [3] and three-dimensional reference interaction site model
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(3DRISM) [4]. It was shown that the RISM equation as the implicit solvent model gives more
physically-correct description of the system in comparison to the continuum electrostatics models
[5, 6, 7]. The important application of the RISM equations is the calculation of the solvation free
energy (SFE) of compounds. Within the framework of the proposed model solvation free energy
can be analytically calculated from the solutions of the RISM equations [8, 9]. Recently there were
proposed several parameterization methods of the results of the RISM calculations which predict
the solvation free energy with the accuracy of 1 kcal/mol [10, 11, 12, 13, 14]. However, despite
the good results RISM still describes not enough accurately the molecular solvent, which leads
to the numerous corrections needed for achieving the desired accuracy of the calculations. The
3DRISM equations describe more accurately e the stucture of the molecule and, as it was shown,
they need essentially less corrections for accurate calculation of the thermodynamic parameters
[15, 16]. Direct Picard iteration method is the standard algorithm for solving the equations of the
IETL [17]. Although it is easy to implement, but it has quite a low convergence rate. There were
proposed several alternative schemes which increase the convergence rate [1, 18, 19, 20]. Another
way to speed up the calculations is to use the multi-scale methods [21, 22, 23, 24, 25, 26, 27, 28].
It is necessary to note that although most of the multi-scale methods use several grids, not all of
them do it effictively. However, the multi-grid technology allows to use all the advantages of the
multi-scale approach [29]. It was recently shown that the multi-grid allows to increase performance
of the RISM calculations up to the several dozen times[30]. In the current paper the multi-grid
algorithm which solves the 3DRISM equations is described. The optimal discretization parameters
for the solvation free energy calculations are found. The benchmarking of the algorithm and the
comparison to the standard Picard iteration method is perfromed.

2 Method

2.1 3DRISM

In the paper the 3DRISM for the description of the infinitely diluted solutions is used. The solvent
molecules are given in the RISM approximation, while the solute molecule is a three-dimensional
object. The solvent structure is described by the total and direct correlation functions of the
solvent site α: hα(r), cα(r). 3DRISM equations are written as following:

hα(r) =

Nsolvent
∑

ξ=1

∫

R3

cξ(r
′)χξα(r

′ − r)dr′ (1)

where Nsolvent is the number of solvent sites, χξα(r) is the solvent susceptibility function. The
functions χξα(r) are defined by the formula χξα(r) = ωξα(r) + ρhξα(r), where hξα(r) is the total
correlation function of the pure solvent, ρ is the solvent number density (number of particles in
the unit volume), ωξα(r) = δξαδ(r) + (1− δξα)δ(r− rξα)(4πr

2
ξα)

−1, δξα is the Kronecer’s delta, δ(r)
is the Dirac delta fuunction, rξα is the distance between the sites ξ and α in the solvent molecule.
Equation (1) is completed with the closure relation:

hα(r) = e−βUα(r)+hα(r)−cα(r)+Bα(r) − 1 (2)

Where β = 1/kBT , kB is the Boltzmann constant, T is the temperature, Uα(r) is the interaction
potential of the site α with the solute molecule. To solve the 3DRISM equations iteratively the
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Figure 1: The spacing is the distance between the grid points, and the buffer is the minimal
distance from the solute atoms to the grid boundaries

equations (1) are written in the following form [31]:

γα(r) =

Nsolvent
∑

ξ=1

∫

R3

C[γξ(r′ − r)] · χξα(r
′)dr′ + θα(r)− C[γα(r)] (3)

where γα(r) = hα(r)c
S
α(r), c

S
α(r) = cα(r) + βUL

α (r), Uα(r) = US
α (r) + UL

α (r), U
S
α (r) is the short-

term component of the potential, UL
α (r) is the long-term component of the potential, θα(r) =

−β
∑

ξ

∫

R3 U
L
ξ (r− r′)χξα(r

′)dr′ In the current paper the Kovalenko-Hirata closure is used [17]. It
is defined by the following formula:

C[γα(r)] =
{

e−βUS
α (r)+γα(r) − γα(r)− 1 − βUS

α (r) + γα(r) > 0
−βUS

α (r)
(4)

In the numerical formulation of the problem (1)-(2) the functions γα(r), χξα(r), θα(r) are given
by their values in the grid nodes. We use two values to define the grid: spacing and buffer. The
spacing is the distance between the grid points, and the buffer is the minimal distance from the
solute atoms to the grid boundaries (see Figure 1)

We use the notations FG[·], F−1
F [·] for the forward and inverse discrete Fourier transforms on

the grid G. The discrete equation which corresponds to the equations (3) is the following:

ΓG = F−1
G

[

X̂ · FG

[

C
[

ΓG
]]

]

+ΘG − C
[

ΓG
]

(5)

where ΓG =
(

γG
1 , . . . ,γ

G
Nsolvent

)T
, ΘG =

(

θG
1 , . . . ,θ

G
Nsolvent

)T
, X̂G = [χG

ξα]Nsolvent×Nsolvent
, upper index

G means that the functions are defined by their values in the points of the grid G. The euqation
(5)can be written more compactly:

ΓG = F [ΓG] (6)
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where F [ΓG] = F−1
G

[

X̂ · FG

[

C
[

ΓG
]]

]

+ΘG − C
[

ΓG
]

. The Picard iteration method is defined by

the follwing reccurent formula:

ΓG
n+1 = (1− λ)ΓG

n + λF [ΓG
n] (7)

where ΓG
n - is the n-th step solution approximation, λ is the mixing parameter.

2.2 The multi-grid method

The multi-grid method is used in the paper to reduce the comutational time [29, 30]. The problem
(3) is discretized on several different grids. We say that the grids which have the smaller number
of points the “coarse” grids, and the grids which have larger number of points are the “fine” grids.
We introduce the operators p[·], r[·] which convert the coarse grid to the finer one and the finer grid
to the coarser one correspondingly. We introduce the operator R[·] which transforms the solution
ΓG from the fine grid G to the coarse grid r[G].

R[ΓG] = Γr[G] (8)

We introduce also the operator P [·], which interpolates the coarse-grid solution ΓG to the fine grid
G.

P [Γr[G]] = ΓG
1

(9)

In our work the linear interpolation operator P [·] is used. The multi-grid method solves the
following problem:

ΓG = F G[ΓG] +DG (10)

where D =
(

dG
1 , . . . ,d

G
Nsolvent

)T
is the vector of corrections.

It is convenient to introduce the iterative operator ΛG[·; ·], which is defined in the following
way:

ΛG[ΓG ;D
G ] = (1− λ)ΓG + λ

(

FG[Γ
G ] +DG

)

(11)

The iterative multi-grid algorithm which solves the equation (10) can be written in a following
way:

ΓG
n+1 = Ml

G

[

ΓG
n;D

G
]

(12)

where ΓG
n is the solution approximation on the n-th step, Ml

G [·; ·] is the multi-grid operator, which
performs one multi-grid iteration step of depth l on the grid G. Calculation of the multi-grid
operator of depth l = 0 is equal to the performing of n one-grid iteration steps on the grid G If
l > 0 for the given initial guess ΓG

n and correctons vector DG the multi-grid operator Ml
G [·; ·] is

calculated by the following algorithm:
Input: ΓG

n, D
G, l

Output: ΓG
n+1 = Ml

G[Γ
G
n;D

G ]

1. Perform ν1 Picard iteration steps on the fine grid (in our work ν1 = 1):

Γ′G = (ΛG)
ν1
[

ΓG
n;D

G
]

2. Move to the coarse grid r[G]:
Γ

r[G]
(0) = R[Γ′G ]
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3. Calculate the coarse grid correction:

Er[G] = R
[

F [Γ′G]
]

− F [Γ
r[G]
(0) ]

4. Repeat recoursively µ multi-grid iteration steps of depth l−1 on the coarse grid (in our work
µ=1):

Γ
r[G]
(µ) =

(

Ml−1
r[G]

)µ [

Γ
r[G]
(0) ;R[DG ] + Er[G]

]

5. Correct the fine-grid solution:

Γ′′G = Γ′G + P
[

Γ
r[G]
(µ) − Γ

r[G]
(0)

]

6. Perform ν2 Picard iteration steps on the fine grid (in our work ν2 = 0):

ΓG
n+1 = (ΛG)

ν2
[

Γ′′G ;DG
]

The iterations are performed until the following stop-condition satisfies:

||Γn − Γn+m|| < εtres (13)

where m is selected in such a way that the following relation holds:

||ΓG
n+m − ΓG

n+m+1|| < 0.01||ΓG
n − ΓG

n+1|| (14)

In the paper is used the norm based on the solvation free energy calculations:

||ΓG
1 − ΓG

2 || = |∆GKH(Γ1)−∆GKH(Γ2)| (15)

where the solvation free energy is calculated using the Kovalenko-Hirata formula [32]:

∆GKH(Γ
G) = ρkBT

Nsolvent
∑

α

∫

R3

θ(−hα(r))hα(r)−
1

2
cα(r)hα(r)− cα(r)dr (16)

In the paper the value theshold value εtres=0.001 is used.

2.3 Computational details

For the argon, methane, metanol and water the OPLS-AA partial charges were used[33]. For the
water (solute and solvent species) the parameters of the MSPC-E water model were used [34].
In the paper the total correlation functions of the pure water calculated in the paper [34] were
used. Pairwise σ Lennard-Jones parameters were calculated as the arithmetic mean of the atomic
parameters, pairwise ε Lennard-Jones parameters were calculated as the geometric mean of the
atomic parameters:

σ12 =
σ1 + σ2

2
ε12 =

√
ε1 · ε2 (17)

Calculations were performed on the Dual Core AMD Opteron(tm) Processor 885 with the clocking
2613 MHz. The forward and inverse Fourier transforms were calculated using the FFTW3 library
[35].
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3 Results

The 3DRISM calculations were performed for the infinitely dilutes aqueous solutions of four com-
pounds: argon, methane, methanol, and water. To determine the optimal grid parameter the
solvation free energy calculations for the grids with the different spacing and buffer were per-
formed. In the Figure 2 the dependence of the calculation error on the grid spacing is presented.
For the calculations the grids with the buffer 5Å and the spacing from 0.05Å to 0.6Å were used.
The calculation error on each grid was calculated as the absolute value of the difference between the
SFE calculated on the current grid and the SFE calculated on the grid with the spacing 0.025Å .
The solvation free energy values calculated on this grid were used as the standard. On the grid
with the spacing 0.05Å the maximal calculation’s error is less than 0.3 kcal/mol, while for the
grids with the larger number of points the calculation’s error is more than 1 kcal/mol. Relatively
large calculations’ errors can be explained by the fact that the Cartesian grid cannot approximate
the spherically symmetrix functions ωξα(r) which define the structure of the solvent molecule with
the good accuracy. Thus in a fact we use the solvent molecules with the distorted geometry which
causes the decreasing of the accuracy of the calculations. The acceptable accuracy for the chem-
ical applications is 0.5 kcal/mol. As it was shown, it is enough to have the grid with the spacing
0.05Å in order to calculate the SFE with the accuracy 0.5 kcal/mol.

Figure 2: Dependence of the error of the SFE calculations (Error of G) on the grid spacing

In Figure 3 the dependence of the calculation error on the grid buffer is presented. Calculations
were performed on the grids with the constant spacing ∆R=0.05Å . The error was calculated as
the difference between the SFE calculated on the current grid and the SFE calculated in the grid
with the spacing 0.05Å and the buffer 14Å which was used as the standard. For the calculations
with the accuracy of 0.5 kcal/mol it is enough to use the buffer 8Å .

To test the performance of the proposed algorithm the calculations for the aqueous solutions of
argon, methane, methanol, and water on the grid with the spacing 0.05Å and the buffer 8Å were
performed. The multi-grid algorithm with the depth l = 2 was used. In Table 1 the comparison
of the comutation time of the multi-grid and Picard iteration methods is presented. The average
computation time for the Picard iteration method is 7 h. 42 min., while the average computation
time for the proposed multi-grid method is 36 min. In average the multi-grid method is 12.2 times
faster than the Picard iteration method.
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Figure 3: Dependence of the error of the SFE calculations (Error of G) on the grid buffer.

Table 1: Comparison of the comutation time for the Picard iteration method and for the multi-grid
method.
Compound Picard iteration multi-grid speedup (times)

argon 4 h. 45 min. 25 min. 11.5
methane 10 h. 42 min. 41 min. 15.7
methanol 12 h. 16 min. 48 min. 15.3
water 3 h. 5 min. 29 min. 6.4

Average 7 h. 42 min. 36 min. 12.2
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4 Conclusions

In the paper the new multi-grid based method for solving the 3DRISM equations is proposed.
To determine the optimal grid parameters the 3DRISM calculations for infinitely diluted aqueous
solution of argon, methane, methanol and water were performed. It is shown that on the gird with
the spacing 0.05Å and the buffer 8Å the maximal comutational error is less than 0.3 kcal/mol,
while for the grids with the larger spacing the computational error is more than 1 kcal/mol. The
performance of the proposed algorithm was compared to the performance of the standard Picard
iteration method. It is shown that the average calculation time is 36 min. for the proposed method
while the average calculation time for the Picard iteration method is more than 7 hours. Thus, we
show that the multi-grid algorithm is more than 12 times faster than the standard Picard method.
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