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1 Introduction

Attempts to modify the theory of general relativity, by including higher order

invariants in the action, started not too long after its inception [1], [2]. Later the

non-renormalizability of general relativity gave impetus to the inclusion of higher

order terms in the action [3]. More recently it was shown that when quantum

corrections are taken into consideration, higher order curvature invariants need to

be added to the low energy gravitational action [4]. Such considerations further

increased the interest in constructing theories in which the Einstien-Hilbert action

is extended by the inclusion of higher order curvature invariants with respect to

the Ricci Scalar. Our interest here is in the so-called f(R) theories of gravity. In
these theories the Lagrangian in the Einstein-Hilbert action

I ′G = − 1

2κ

∫

d4x
√−g R , (1)

where κ = 8πG, G is the gravitational constant, g is the determinant of the metric
tensor and R is the Ricci scalar (in units c = h̄ = 1), is generalized to become

I ′ = − 1

2κ

∫

d4x
√
−g f(R) . (2)

In eq.(2) f(R) is a general function of R [5]. Our focus here is on the cosmologi-

cal aspects of f(R) theories.
Now in another direction, the quest for quantum theory of gravity has led to the

study of the simpler case of gravitational theory in two-dimensional spacetime.

Such a spacetime provides an interesting arena in which to explore some funda-

mental aspects of both classical and quantum gravity. The reduction in the degrees

of freedom greatly simplifies the analysis of the field equations. This leads to ap-

preciable understanding of several problems in gravity theory. In two-dimensional

spacetime, the two-dimensional gravitational constant G2 is dimensionless and

formally the theory with the bare action is

IG = − 1

2g
N

∫

d2x
√
−g R , (3)

where g
N
= 8πG2, is power counting renormalizable in perturbation theory. How-

ever the Einstein− Hilbert action term is purely topological in two dimensions. In

fact in two spactime dimensions, the curvature tensor Rµνλρ has only one indepen-

dent component since all nonzero components may be obtained by symmetry from

R0101. Equivalently the curvature tensor may be written in terms of the curvature

scalar [6]

Rµνλρ =
1

2
R (gµλgνρ − gµρgνλ) , (4)
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so that R alone completely characterizes the local geometry. Eq.(4) implies that

Rµν =
1

2
gµνR , (5)

so that the Einstein tensor Gµν = Rµν -
1
2
gµνR, vanishes identically and the usual

Einstein equations are meaningless in two dimensions. This led to various models

for gravity in two-dimensional spacetime being proposed [7]. Of special interest

are those models that involve a scalar field, the dilation, in the action [7] − [10].

We have previously studied some aspects of classical and quantum cosmology

in two-dimensional dilation gravity models [11], [12]. In the present work we

study f(R) theories as an alternative way to formulate gravitational theory in two-

dimensional spactime and explore some of their cosmological implications. We

restrict ourselves to the classical theory only.

In sect. 2 we set up the f(R) gravity theory in two-dimensional spacetime and

derive the general field equations. We then specialize to the case of the Friedmann

− Robertson−Walker metric and obtain the field equations with matter treated as

a perfect fluid. Sect. 3 is devoted to obtaining solutions to the cosmological field

equations under various conditions of matter or radiation dominance. Properties

of these solutions are discussed in sect. 4. In particular, conditions for ensuring

cosmic acceleration and solving the horizon problem are elucidated. Inflation is

discussed in sect. 5 and solutions to the field equations in the absence of matter or

radiation are obtained and their properties are discussed. In sect.6 we carry out the

quantization. We establish the Wheeler-DeWitt equation and obtain its solutions.

In sect. 7 we offer some concluding remarks.

2 Field equations

We write the two-dimensional action for f(R) gravity as

I = IG + IM , (6)

where

IG = − 1

2g
N

∫

d2x
√
−g f(R) , (7)

is the gravitational action and IM is the matter action [13]. The field equations

can be derived by varying the action with respect to the metric tensor gµν . Upon
noting that the stress-energy tensor is defined by

δIM =
1

2

∫

d2x
√−g T µνδgµν , (8)

we derive the following field equation
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f ′(R) Rµν −
1

2
gµνf(R)− gµν2f

′(R) +∇µ∇µf
′(R) = −g

N
Tµν . (9)

In eq.(4)Rµν is the Ricci tensor, the prime denotes the differentiation with respect

to R and the operator 2 is defined by

2f ′(R) =
1√−g ∂µ(

√
−g gµν ∂νf ′(R)) . (10)

Using eq.(5) we can write eq.(9) as

1

2
gµν(f

′(R)R− f(R))− gµν2f
′(R) +∇µ∇νf

′(R) = −g
N
Tµν . (11)

In the following we shall be concerned with cosmological implicatons of eq.(11).

For this purpose we shall adopt the Friedman-Robertson-Walker (FRW) metric

which in two-dimensional spacetime reads ( c = 1)

ds2 = −dt2 + a2(t)

1− k x2
dx2 , (12)

in terms of the comoving coordinates x and t. The quantity a(t) is the usual time-
dependent cosmic scale factor. A change of variable dx2/(1− kx2)→ dx2 leads

ds2 = −dt2 + a2(t) dx2 . (13)

Thus in two dimensions the time evolution of a(t) is not affected by the value of
k = 0,±1 corresponding to the three different cosmological models [14]. This
is unlike the four-dimensional case. The values k = 0,−1 still describe spatially
open flat and hyperbolic universes respectively while k = 1 describes a closed

universe. The stress-energy tensor of the homogeneous isotropic universe is taken

to be that of a perfect fluid

Tµν = p gµν + (p+ ρ) Uµ Uν , (14)

where p is the pressure, ρ is the energy density and Uµ is the comoving velocity.

Using eq.(13) and eq.(14) we obtain from eq.(11) the following two independent

cosmological field equations

1

2
(R f ′(R)− f(R)) +

ȧ

a
∂tf

′(R) = g
N
ρ , (15)

1

2
(R f ′(R)− f(R)) + ∂2t f

′(R) = −g
N
p , (16)
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where we use the dot as well as ∂t to indicate differentiation with respect to time.
We note that if f(R) is expressed as a sum of powers Rn of R, then a term linear

inR would cancel out in the bracketed terms in eq.(15) and eq.(16) and would not

contribute to the derivative terms either. Hence it has no effect on the dynamics.

The stress-energy tensor obeys the conservation law

∇αTαβ
= 0 , (17)

and this, for a perfect fluid, gives rise to the following two equations

Uα ∇αρ+ (p+ ρ) ∇α Uα = 0 , (18)

and

(p+ ρ) Uα ∇α Uβ + (gαβ + Uα Uβ) ∇α p = 0 . (19)

For the FRW metric of eq.(13) one readily obtains from eq.(18) that

d

da
(ρa) = −p . (20)

Assuming an equation of state of the form p = γρ where γ is a constant, eq.(20)
immediately leads to

ρ = Ca−γ−1 , (21)

where C is a constant. Eq.(19) is seen to be identically satisfied and does not

give rise to anything new. For a pressureless (dust) pure matter universe (ρm 6= 0,
ρr = 0, γ = 0) we have

ρm = Cm a−1 , (22)

while for a pure radiation universe (ρm = 0, ρr 6= 0, γ = 1) one has

ρr = Cr a
−2 , (23)

Denoting the present time by t0 and using the usual notation of a0 ≡ a(t0) and
ρ0 ≡ ρ(t0) to denote present-day values of these quantities, we can write for a
matter-dominated universe

pm = 0, ρm(t) = ρm0
a

0

a(t)
, (24)

while for a radiation-dominated universe one has

pr = ρr(t) = ρr0

(

a
0

a(t)

)2

, (25)
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Finally we wish to note that for the FRW metric the curvature scalar of this two-

dimensional universe is given by

R = − 2ä

a(t)
, (26)

where ä = d2a
dt2

.

3 Solutions of the cosmological field equations

In this section we seek solutions of the cosmological field eqs.(15) and (16) with

the energy density and pressure given by eqs.(24) and (25) for each component

of the cosmological fluid thus obtaining two sets of equations. For the matter

dominated epoch we obtain the following equations

1

2
(Rf ′(R)− f(R)) +

ȧ

a
∂tf

′(R) = g
N
ρm0

a0
a
, (27)

1

2
(Rf ′(R)− f(R)) + ∂2t f

′(R) = 0 . (28)

For the radiation dominated epoch the corresponding equations read

1

2
(Rf ′(R)− f(R)) +

ȧ

a
∂tf

′(R) = g
N
ρr0

a20
a2
, (29)

1

2
(Rf ′(R)− f(R)) + ∂2t f

′(R) = −g
N
ρr0

a20
a2
, (30)

To proceed further we need to specify the function f(R). Similar to the proce-
dure followed in the four-dimensional case [5] we take for f(R) the following
expression

f(R) = R + αRn , (31)

where the real constants α and n are, at this stage, only restricted by α 6= 0 and
n 6= 1. Upon substitution of eq.(31) into eqs.(27) and (28) we obtain the equations

1

2
(n− 1)αRn + n(n− 1)αRn−2Ṙ

ȧ

a
= g

N
ρm0

a0
a
, (32)

2nRR̈ + 2n(n− 2)Ṙ2 +R3 = 0 . (33)

Equations (32) and (33) describe the matter dominated epoch and we shall attempt

to find solutions for them now. We start with eq.(33) and note that in terms of the

function z(R) defined by
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z(R) = Ṙ2 , (34)

the equation is transformed into the following form

dz

dR
+

2(n− 2)

R
z +

R2

n
= 0 . (35)

This equation is easily solved and we obtain for n 6= 1
2

z(R) = Ṙ2 = − 1

n(2n− 1)
R3 + C1R

4−2n , (36)

where C1 is a constant. Eq.(36) then leads to the parametric solution

t = ±
∫

[

− R3

n(2n− 1)
+ C1R

4−2n

]

−1/2

dR + C2 , (37)

where C2 is a constant. For n = 2 and C1 6= 0 one can carry out the integration
using the result [14]

∫

dx

(K − xα+2)1/2
=

x√
K

2F1

(

1

2
,

1

α + 2
,
α + 3

α + 2
;
xα+2

K

)

, (38)

where α,K are constants and 2F1 is the hypergeometric function. We obtain

t = ±
(

6

C1

)1/2

R 2F1

(

1

2
,
1

3
,
4

3
;
R3

C1

)

+ C2 . (39)

Ideally one should solve eq.(39) to obtainR as a function of the cosmic time t and
plug that into eq.(32) in order to solve for a(t) in the case of n = 2, but that is
a difficult task. Instead we consider solutions for which C1 = 0 in eq.(36) and a
general n 6= 1

2
. One can then easily derive that

R = − 4n(2n− 1)

(t− tm)2
, (40)

where we have renamed the integration constant C2 as tm. In fact one can verify
directly by substitution that the expression for R in eq.(40) is a solution of eq.(33)

Next we substitute eq.(40) into eq.(32) and obtain

A2ȧ+ A1(t− tm)
−1a = Ka0 (t− tm)

2n−1 , (41)

where

A1 =
1

2
(n− 1)Nn; A2 = −2n(n− 1)Nn−1 , (42)
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and

N = 4n(1− 2n); K =
g
N
ρm0

α
. (43)

We readily solve eq.(41) and get

a(t) = C̄(t− tm)
1−2n + K̄(t− tm)

2n , (44)

where C̄ is a constant and

K̄ =
Ka0

(4n− 1)A2
. (45)

Clearly n must be such that A1 and A2 are real and K̄ is finite. We will return to

this issue later. It is interesting to note that the t dependence of R is (t − tm)
−2

and thus independent of n, while that of a(t) does depend on n. We also note that

the relation R = −2ä
a
is satisfied by the solutions for R and are given in eqs.(40)

and (44) respectively. We further note that the second term in eq.(44) is a solution

of eq.(41) in its own right. On the other hand the first term in eq.(44) is a solution

of the homogeneous form of eq.(41). Furthermore the constants C̄ and K̄ must be

such that a(t) is positive.
We now turn to the case of radiation. Upon adding eqs.(29) and (30) we obtain

the equation

Rf ′(R)− f(R) + ∂2t f
′(R) +

ȧ

a
∂tf

′(R) = 0 . (46)

Employing in eq.(46) the expression for f(R) given in eq.(31) above yields

nRR̈ + n(n− 2)Ṙ2 +R3 + nRṘ
ȧ

a
= 0 . (47)

Next we use eq.(31) in eq.(29) and obtain

1

2
(n− 1)αRn + n(n− 1)αRn−2Ṙ

ȧ

a
= g

N
ρr0

a20
a2
. (48)

Motivated by the structure of the solutions for the cosmological equations in the

case of pure matter above, we seek solutions for R(t) and a(t) of eqs.(47) and
(48) in the form of powers in t − tr where tr is some reference time. We obtain

the following results

R(t) = 2n(n− 1)(t− tr)
−2 , (49)

a(t) = B(t− tr)
n , (50)

where the constant B is given by
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B =

[

g
N
ρr0

n(n− 1)(1− 3n)[2n(1− n)]n−1α

]1/2

a0 . (51)

Note that, as in the case of matter, the t dependence of R(t) is independent of
n, the only such dependence appears in the overall coefficient. We also note that

the relation R = −2ä
a
is satisfied by the solutions for R and are given above in

eqs.(48) and (50). For an expanding universe one must have n > 1 and B > 0.
Furthermore the value of n must ensure that the bracketed term in eq.(51) is finite

and real.

4 Properties of the solutions

We now discuss some properties of the solutions of the cosmological field equa-

tions found in the previous section. Let us first look at the radiation dominated

case and determine whether our vision of the universe is limited by a particle

horizon. At a given cosmic time ts the proper distance d(ts) of the emitter is given
by

d(ts) = a(ts)

∫ ts

te

dt′

a(t′)
, (52)

Where te is the time of emission of the photon. Using eq.(50) we obtain

d(ts) =
(ts − tr)

n

1− n

[

(ts − tr)
1−n − (te − tr)

1−n

]

. (53)

We can view tr as signifying the onset of the radiation epoch. We see that as

te → tr, d(ts) is finite for 1−n > 0 and diverges for 1−n < 0. Hence no particle
horizon problem will arise if n > 1 which is the same condition required for an
expanding universe. Reality of B also requires n to be an integer. For n an even

integer, the parameter α must be positive while for n odd, α should be negative.

Thus we take n to be a positive integer greater than one. Next we note that the

cosmic acceleration ä(t) which is given by

ä(t) = n(n− 1) B (t− tr)
n−2 , (54)

is positive for t > tr since n > 1 and is constant for n = 2. Now in two-

dimensional spacetime the radiation energy density ρr ∝ T 2 were T is the tem-

perature [14] and it follows therefore from eq. (25) that

a ∝ T−1 . (55)

Since we have a→ 0 as t→ tr, we conclude that this radiation universe has a hot
big bang origin.
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Next we turn to the case of the matter dominated universe described by eqs. (40)

and (44) . First let us consider the case C̄ = 0 when the scale factor becomes

ā(t) = K̄(t− tm)
2n . (56)

As we have stated earlier this is viable because it represents a solution of eq.(41).

The time tm can be taken to signify the onset of matter dominance. The proper

distance d(ts) is now given by

d(ts) =
(ts − tm)

2n

1− 2n
[(ts − tm)

1−2n − (te − tm)
1−2n] . (57)

Hence no particle horizon will arise if 2n > 1. Also as we stated following

eq.(45), the parameter n must be such that the constants A1 and A2 given by

eq.(42) are real. Since for 2n > 1 the number N of eq.(43) is negative, it follows

that n has to be a positive integer. Now the requirement that ā(t) > 0 for t > tm
implies that K̄ > 0. For n even we have A2 > 0 and hence α should be positive

to ensure K̄ > 0 while for n odd one has A2 < 0 and α should be negative. Since

we exclude n = 1, the smallest permissible value is n = 2. For such values of n
it is evident that the cosmic acceleration ¨̄a(t) is positive. Finally we observe that
for the pure matter universe we have ā(t)→ 0 as t→ tm.
We now consider the case C 6= 0. Using eq.(44) the proper distance is now given

by

d(ts) = a(ts)

∫ ts

te

(t− tm)
2n−1

C + K̄(t− tm)4n−1
dt . (58)

It is clear that the integral converges for te → tm and we do a have particle horizon.

Performing the integral we determine the proper distance to the horizon to be

d(ts) =
a(ts)

C̄

(

K̄

C̄

)2n(4n−1){

− ln(1 + ξs)

4n− 1

− 1

4n− 1

2n−1
∑

k=1

cos

[

2nπ(2k − 1)

4n− 1

]

ln

(

1− 2ξs cos
2k − 1

4n− 1
π + ξ2s

)

+
2

4n− 1

2n−1
∑

k=1

sin

[

2nπ(2k − 1)

4n− 1

]

arctg

[

ξs − cos 2k−1
4n−1

π

sin 2k−1
4n−1

π

]

− (ξs ←→ ξe)

}

.

(59)

where

ξj =

(

C̄

K̄

)4n−1

(tj − tm), j = s, e . (60)
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Let us now study further properties of the solution given in eq.(44). In the follow-

ing we consider only values of t such that t > tm . Now it is evident that, except

for values of n in the interval 0 < n < 1
2
, the first term in eq.(44) dominates for

t near tm when n > 1
2
while the second term dominates for n < 0. Hence to

ensure positivity of the scale factor we require that both C̄ and K̄ be positive. For

0 < n < 1
2
, C̄ and K̄ can have opposite signs but only in such a manner so as to

keep a > 0. We shall for simplicity assume that C̄ > 0 and K̄ > 0 for all values
of n. Next we observe that outside the interval 0 < n < 1

2
, the number N of

eq.(43) is negative and to ensure the reality of A2 given by eq.(42), the number n
has to be an integer. We readily deduce that for α > 0, n can be a positive even

integer or a negative odd integer. On the other hand for α < 0, n can be a positive
odd integer or a negative even integer. The cosmic acceleration ä(t) is given by

ä(t) = 2n(2n− 1)(t− tm)
−2a(t) . (61)

It is seen that ä < 0 for 0 < n < 1
2
, ä = 0 for n = 1

2
and ä > 0 for n < 0

or n > 1
2
.

Next we consider the behavior of a(t) as t→ tm for the case C̄ 6= 0. We see from

eq.(44) that for 0 < n < 1
2
, a(t) → 0 as t→ tm and accordingly the temperature

T → ∞ in this limit. For n = 1
2
, we have a(t) → C̄ as t → tm and T is finite.

However for n outside the interval 0 ≤ n ≤ 1
2
the behavior of a(t) is very different

as t→ tm. We see that a(t)→∞ in this limit and and energy density ρm as well

as the temperature tend to zero. As t increases beyond the value tm, a(t) decreases
to finite values and the density increases. However a(t) never reaches zero and
attains a minimum value at t = tc given by

tc = tm +

[

(2n− 1)C̄

2nK̄

]1/4n−1

. (62)

For t > tc, a(t) starts to increase. We also note from eq.(40) that the curvature

scalar R → −∞ as t → tm and then starts increasing through finite negative

values as t grows beyond tm. The singular behavior of the scale factor noted

here should be contrasted with that of the FRW cosmological models in four-

dimensional general relativity where the scale factor and energy density go to

zero and infinity respectively as the initial moment is approached.

5 Inflation

The horizon problem in four-dimensional standard FRW cosmology is a conse-

quence of deceleration in the expansion of the universe. The problem can be

solved by postulating a phase of the universe, prior to the decelerating phase, in

10



which the expansion is accelerating and such a phase is called a period of infla-

tion. Hence inflation is characterized by the following property for the scale factor

a(t) :
ä(t) > 0 . (63)

Now as evident from the analysis of sect. 4, ä > 0 is readily achieved in our

f(R) theory in two-dimensional spacetime and the universe is accelerating. The
solutions obtained for the scale factor displayed power dependence on time akin

to that of power-law inflation. It would seem that there is no need to require an in-

flationary phase since matter or radiation dominated epochs yield an accelerating

universe. Here we are not seeking to introduce scalar fields to propel acceleration

as in the usual inflationary cosmology. We recall that one of the motivations for

introducing modified or f(R) theories of gravity in four-dimensional spacetime is
the desire to explain acceleration of the universe as an alternative to using scalar

fields. For this purpose solutions for the cosmological field equations are sought

in the absence of the matter fluid [5]. We carry out such an analysis in our case

by considering solutions to eqs.(32) and (33) of sect. 3 with the R.H.S set equal

to zero. We have earlier obtained a general solution for eq.(33) given by eq.(37)

of sect. 3. However the parametric nature of that solution makes it difficult to use

in eq.(32) in order to solve for a(t). Putting C1 = 0 enables the integration in

eq.(37) to be performed and leads to the solution given in eq.(40) which we write

below as

R = −4n(2n− 1)

(t− t̄)2
, (64)

where n 6= 1
2
, 1 and we have now denoted the integration constant by t̄. Using

eq.(64) in eq.(32) with the R.H.S. set equal to zero yields the equation

ȧ+
2n− 1

t− t̄
a = 0 , (65)

the solution of which reads

a(t) = A(t− t̄)1−2n , (66)

where A > 0 is a constant. We take the solution to hold for t > t̄ . The cosmic
acceleration is given by

ä(t) = 2n(2n− 1) A (t− t̄)−2n−1 . (67)

The Hubble parameter is

H =
ȧ

a
=

1− 2n

t− t̄
, (68)
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and

Ḣ =
2n− 1

(t− t̄)2
. (69)

For n < −1 we can identify t̄ with the onset of inflation t̄ = ti. Eq.(66) then
describes a universe that expands with positive acceleration for t > ti . We also

have H > 0 and Ḣ < 0 for t > ti which characterizes standard inflation. How-
ever if we make the identification t̄ = ti for n > 1, we will have a situation in
which a(t) → ∞ as t → ti thus obtaining a universe that starts off already with
an infinite size at the onset of inflation collapsing subsequently for t > ti at an
accelerated rate. Such a scenario can be avoided if t̄ is instead taken to have a

relatively large value so that t < t̄ during the inflationary epoch. We write a(t)
now as

a(t) = A |t− t̄|1−2n . (70)

The universe then starts off with a relatively small non-zero size at t = ti and
expands with positive acceleration as time progresses. We also have

H =
2n− 1

t̄− t
, (71)

Ḣ =
1− 2n

(t̄− t)2
, (72)

so that H > 0 and Ḣ < 0 and we again have standard inflation.
As in four spacetime dimensions we define the so called slow-roll parameter ε by
[5]

ε = −Ḣ/H2 . (73)

and in terms of which one has

ä

a
= H2 + Ḣ = (1− ε)H2 . (74)

Inflation can thus be attained only if ε < 1. In our present context ε is given by

ε =
1

|2n− 1| , (75)

for both cases of n < −1 and n > 1 we clearly have ε < 1. The slow-roll

approximation corresponding to ε << 1, then obtains when |2n− 1| >> 1.

As we have stated above the solution for R given in eq.(64) arises as a special

case of the general solution given in eq.(37). As an alternative to solving eqs.(32)

and (33) one can derive an equation for the Hubble parameter [15], [5]. We write

eq.(32)with the R.H.S set equal to zero

2nṘȧ+R2a = 0 . (76)
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Now from eq.(26) of sect. 2 we obtain

Ṙ = −2
...
a

a
+

2ä ȧ

a2
. (77)

Substituting eqs.(26) and (77) in eq.(76) one obtains

− n a ȧ
...
a + a ä2 + nȧ2ä = 0 . (78)

Next in terms of H , Ḣ and Ḧ we can express eq.(78), after some manipulations,

as

− nHḦ − 2(n− 1)ḢH2 + Ḣ2 +H4 = 0 . (79)

It is customary, in dealing with equations such as this, to invoke the slow-roll

approximation |Ḣ/H2| << 1 and |Ḧ/HḢ| << 1, [15], [5]. Applying this to
eq.(70) we obtain that

− 2(n− 1)Ḣ +H2 = 0 . (80)

The solution of eq.(80) is

H(t) =
−2(n− 1)

t− t̄ ′
, (81)

where t̄′ is a constant. Eq.(81) in turn gives

a(t) = A′/(t− t̄
′

)2(n−1) . (82)

with A′ being another constant. Eq.(82) for a(t) is similar in structure to eq.(70)
and the properties of the solution are therefore similar to what we discussed before

and hence will not be considered any further.

We shall next seek a general solution to eq.(33) for R(t) that holds for t close
to the instant ti that signifies the onset of inflation. Specifically we assume that
t = ti is a regular point of eq. (33) and seek a solution for R(t) in the form of

a power series confining ourselves to small values of t − ti. For simplicity we
consider the case n = 2 for which eq. (33) becomes

4R̈ +R2 = 0 . (83)

We write

R(t) =

∞
∑

m=0

bm(t− ti)
m . (84)

Substituting eq. (84) in eq.(83) and solving we obtain

b2 = −
1

8
b20 , (85)
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b3 = −
1

12
b0 b1 , (86)

etc. This leads to

R(t) = b0 + b1(t− ti)−
1

8
b20(t− ti)

2 − 1

12
b0b1(t− ti)

3 + ...... (87)

We remark that if inflation lasts for a short period of time then it is sensible to

have a representation for R(t) as given in eq.(87). Moreover for sufficiently small

t − ti we can approximate R(t) by the first two terms and substitute in eq.(76)
with n = 2. Solving the resulting equation we obtain

a(t) ≈ C exp

{

− 1

12b21
[b0 + b1(t− ti)]

3

}

, (88)

where C > 0 is a constant. We can write eq.(88) as

a(t) ≈ ai exp

{

− 1

12b21
([b0 + b1(t− ti)]

3 − b30)

}

, (89)

where

ai = a(ti) = C exp

(

− b30
12b21

)

. (90)

From eq. (88) we obtain

ȧ(t) = − 1

4b1
[b0 + b1(t− ti)]

2 a(t) , (91)

and

ä(t) =

{

− 1

2
[b0 + b1(t− ti)] +

1

16b21
[b0 + b1(t− ti)]

4

}

a(t) . (92)

From eq. (89) we see that we must have b1 < 0 to ensure that ȧ > 0. We must also

require a(t) to be increasing for t > ti. This can be achieved by having b0 > 0
for then b0 + b1(t − ti) will start off at the value b0 and decreases reaching zero
at t∗ − ti = − b0

b1
. During the interval, ti < t < t∗, a(t) will be increasing. We

must also require the cosmic acceleration ä(t) to be positive during this interval
and this leads to the condition

1

8b21
[b0 + b1(t− ti)]

3 > 1 . (93)

This inequality will continue to hold until t = tf < t∗ when ä(tf ) = 0. This
implies that

1

8b21
[b0 + b1(tf − ti)]

3 = 1 , (94)
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which yields

tf = ti + b0|b1|−1 − 2|b1|−1/3 . (95)

The time tf then signifies the end of inflation. Since R(ti) = b0 and Ṙ(ti) = b1,
the conditions b0 > 0 and b1 < 0 can be expressed as

R(ti) > 0 (96)

Ṙ(ti) < 0 . (97)

We can also express the duration of inflation as

tf − ti = R(ti)|Ṙ(ti)|−1 − 2|Ṙ(ti)|−1/3 . (98)

The Hubble parameter is given by

H = − 1

4b1
[b0 + b1(t− t1)]

2 . (99)

It thus decreases from an initial valueHi given by

Hi = H(ti) = −
b20
4b1

=
R2(ti)

4|Ṙ(ti)|
, (100)

to a valueHf at the end of inflation where

Hf = H(tf) = |b1|1/3 = |Ṙ(ti)|1/3 . (101)

We note that

Ḣ = − 1

2
[b0 + b1(t− ti)] , (102)

is negative during ti < t < tf and we thus have standard inflation. The slow-roll
parameter is given by

ε = 8 b21[b0 + b1(t− ti)]
−3 . (103)

We recall that for inflation to proceed one must have ε < 1 and this leads to

precisely the condition expressed in eq.(93) stated earlier.

The number of e-foldings from t = ti to t = tf is defined by [5], [16]

N =

∫ tf

ti

Hdt , (104)

which is evaluated to give

N =
2

3

[

(Hi/Hf)
3/2 − 1

]

. (105)
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In four dimensions, the solution of the horizon and flatness problems of big bang

cosmology requires that N ≥ 70 , [17], [5]. If we assume that we can use this
value in our two-dimensional universe, we find that

Hi

Hf
≥ 22 . (106)

i.e., the Hubble parameter decreases to about 4.5% of its initial value by the time

inflation ends.

6 Quantization

As we stated in the introduction two-dimensional spacetime models of gravity

provide an arena where issues like quantization are studied since in such a set-

ting they prove to be more tractable than in four-dimensional spacetime. In this

section we thus consider quantization of the f(R) gravity theory defined by the
action of eq.(3). Our objective is to derive the Wheeler-DeWitt equation for the

wave function of the universe and obtain its solutions. Since we are considering

a spatially homogeneous and isotropic universe, we drop the spatial intergral and

write the action as

IG = − 1

2g
N

∫

dt a(t) f(R(t)) . (107)

We take for f(R) the expression given in eq.(31) and put n = 2. We use eq.(26)

that expresses the scalar curvature in terms of the scale factor and write

IG = − 1

2g
N

∫

dt(a R− 2 α ä R) . (108)

We notice the appearance of the second derivative of a in eq.(108). The stan-

dard approach is to express the wave function in terms of a and R [19]. Hence

integrating by parts in eq.(108), we obtain

IG =

∫

L (a, ȧ, k, k̇) dt , (109)

where

L = − 1

2 g
N

(a R + 2 α ȧṘ) . (110)

The canonical momenta are defined in the usual way

Pa =
∂L

∂ȧ
= − α

g
N

Ṙ , (111)
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PR =
∂L

∂Ṙ
= − α

g
N

ȧ . (112)

The Hamiltonian is then obtained as

H = Paȧ+ PRṘ −L

= −gN

α
PaPR +

1

2g
N

a R . (113)

Replacing Pa and PR by−i ∂
∂a
and−i ∂

∂R
respectively in the Hamiltonianwe obtain

the Wheeler-DeWitt equation for the wave function of the universe

(g
N

α

∂2

∂R ∂a
+

1

2g
N

a R
)

ψ(a, R) = 0 . (114)

Instead of a and R we shall work with the variables

ξ = R + a, η = R− a . (115)

In terms of ξ and η the Wheeler-DeWitt equation becomes

[g
N

α

( ∂2

∂ξ2
− ∂2

∂η2

)

+
1

g
N

(ξ2 − η2)
]

ψ(ξ, η) = 0 . (116)

We seek solutions of eq.(116) in factorizable form

ψ(ξ, η) = X(ξ) Y (η) , (117)

and obtain the following equations for the functionsX and Y

d2X

dξ2
+

α

8g2
N

ξ2X =
C α

g
N

X , (118)

d2Y

dη2
+

α

8g2
N

η2 Y =
C α

g
N

Y , (119)

where C is the separtation constant. The two equations are identical and hence it

is enough to consider one of them. We first take α > 0 and define

γ2 =
α

8g2
N

, (120)

E = −C α

2 g
N

. (121)

17



In terms of γ2 and E eq.(118) reads

d2X

dξ2
+ γ2ξ2X + 2 E X = 0 . (122)

It is interesting to note that eq.(122) is identical to that describing the inverted or

reversed oscillator discussed by several authors in a number of contexts[20]-[24].

By performing the change of variable

y =
√

2γ ξ , (123)

we cast eq.(122) into the form

d2X

dy2
+

1

4
y2 X + ε X = 0 , (124)

where ε = E/γ. Eq.(124) is one of the standard forms of the equation for the
parabolic cylinder functions. Two linearly independent solutions are given by the

real functions W (ε, y) and (ε,−y) [25]. For |y| >> 1 and |y| >> |ε| these
solutions display the following asymptotic behaviour

W (ε, y →∞) ∼
√

2k

y
cos

(1

4
y2 + ε ln y +

1

4
π +

1

2
φ
)

, (125)

W (ε, y → −∞) ∼
√

2

k |y| sin
(1

4
y2 + ε ln|y|+ 1

4
π +

1

2
φ
)

, (126)

where

k = (1 + e−2πε)1/2 − e−πε , (127)

φ = arg Γ
(1

2
− iε

)

. (128)

The functions W (ε, y) and W (ε,−y) satisfy the following normalization condi-
tions [22]

∫

∞

−∞

W (ε, y)W (ε′,−y) dy =

{

0 if ε 6= ε′

π e−πε

(1+e−2πε)1/2
if ε = ε′ .

(129)

∫

∞

−∞

W (ε, y)W (ε′, y) dy = 2π(1 + e−2πε)1/2δ(ε− ε′) . (130)
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The parablolic cylinder functions can be expressed in several forms [25] and we

can use the various relations between these forms to expressW (a, x) in terms of
the more familiar functionDp(x) for some p. In fact one can easily derive that

W (ε, y) =
(k

2

)1/2
[

eiθ Diε−1/2(y e
−

i
4
π) + e−iθ D−iε−1/2(y e

i
4
π)
]

, (131)

where

θ =
1

2

(

− 1

2
πε+

i

4
π + iφ

)

. (132)

Next we observe that the solutions to eq.(119) are identical to those of eq.(118)

but expressed in terms of the vriable η. Hence we can write the following for the
wavefunction ψ.

ψ(ξ, η) = ψ1(ξ)ψ2(η) (133)

where

ψ1(ξ) = C1 W (E/γ,
√

2γ ξ) + C2W (E/γ,−
√

2γ ξ) , (134)

ψ2(ξ) = C ′

1 W (E/γ,
√

2γ η) + C ′

2W (E/γ,−
√

2γ η) . (135)

We now consider the case in which the parameter α is negtive and write eqs. (118)
and (119) as

d2X

dξ2
− |α|

8g2
N

ξ2X = −C|α|
g
N

X , (136)

d2Y

dη2
− |α|

8g2
N

η2Y = −C|α|
g
N

Y . (137)

We define

γ2 =
|α|
8g2

N

, (138)

E = −C|α|
2g

N

, (139)

and thus they retain the same forms as in eqs. (120) and (121) respectively. Fo-

cussing on eq.(136) we write it as

d2X

dξ2
− γ2ξ2 X = 2 E X . (140)

In terms of y =
√
2γ ξ, eq.(140) becomes

d2X

dy2
+ (σ +

1

2
− 1

4
y2)X = 0 , (141)
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where

σ +
1

2
= −E

γ
. (142)

Eq.(141) has the form of Weber’s equation [26] and possesses the following solu-

tion

X1(y) = Dσ(y) = 2
σ
2
+ 1

4 y−
1

2 Wσ
2
+ 1

4
,− 1

4

(y2/2) . (143)

In the above Wµ,ν is the Whittaker function. Expressing Wµ,ν in terms of the

confluent hypergeometric function we can write

X1(y) =
Γ(1

2
) 2

σ
2

Γ(1
2
− σ

2
)
e−

y2

4 F
(

− σ

2
,
1

2
,
y2

2

)

+
Γ(−1

2
) 2

σ
2
−

1

2

Γ(−σ
2
)

y e−
y2

4 F
(1− σ

2
,
3

2
,
y2

2

)

. (144)

For the second solution of eq.(141) we note that from eq.(143) giving the relation-

ship betwen Dσ and the Whittaker function, we know that D−σ−1(±iy) are solu-
tions linearly independent of Dσ(y) as W−

σ
2
−

1

4
,− 1

4

(−y2

2
) is linearly independent

ofWσ
2
+ 1

4
,− 1

4

(y
2

2
). From the asymptotic behaviour of the confluent hypergeometric

function we deduce that as y →∞.

X1(y) ∼ e−
y2

4 yσ . (145)

i.e., X1 → 0. For y → −∞ we have

X1(y) ∼ −
(2π)1/2

Γ(−σ) e
σπie

y2

4 y−σ−1 . (146)

i.e., X1 → ∞ unless σ is a positive integer or zero in which case the R.H.S of

eq.(146) vanishes. In fact we have the relationship

Dn(y) = 2−
n
2 e−

y2

4 Hn

( y√
2

)

, n=0,1,2,..... (147)

that expresses the parabolic cylinder functions Dn in terms of the Hermite poly-

nomials Hn. Going back to eqs.(138), (139) and (142) with σ = n we obtain

Cn =
n+ 1

2√
2|α| 12

, (148)

as the value of the separation constant. The functions Xn(ξ) that solve eq.(140)
are then precisely those that describe the one-dimensional quantum oscillator. We

write
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Xn(ξ) =
(γ

π

)
1

4 1√
2n n!

Hn(
√
γ ξ) e−

1

2
γξ2 . (149)

The solutions Yn(η) are identical in form and we obtain for the normalized wave

function the following

ψn(ξ, η) =
(γ

π

)
1

2 1

2n n!
Hn(

√
γξ)Hn(

√
γ η) e−

1

2
γ(ξ2+η2) . (150)

For σ 6= n the wavefunctions will not have finite norm and solutions of eqs.(136)

and (137) of the type given in eq.(144) would have to be superposed, just as wave

packets are constructed in quantum mechanics, in order to obtain wave functions

capable of describing physical states.
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7 Conclusions

In this work we studied f(R) theories of gravity in two-dimensional spacetime
with focus on applications to cosmology. With the metric taken to have to the

FRW form we were able to obtain solutions for the cosmological field equations

in the case of pure matter or radiation dominated universe when f(R) = R+αRn.

The remarkable feature of these solutions is that they readily describe an accel-

erating universe in contrast to the standard FRW cosmology of four-dimensional

general relativity. The horizon problem is also readily solved. As we have stated

in sect. 2, the time evolution of the scale factor is not affected by the value of the

curvature constant k. We have also seen that the solution for the radiation domi-

nated universe, and one solution for the case of pure matter domination, describe

a hot big bang. However an interesting solution in a matter dominated universe,

given in eq.(44), describes a universe that kicks off with an infinite size and zero

temperature at the start of matter dominance. It subsequently collapses to a finite

size and then begins to expand.

Now as we mentioned before, the interest behind the pursuit of f(R) theories is
partially due to the desire to obtain a description of inflation without the intro-

duction of scalar fields. This is done by seeking solutions to the cosmological

field equations with the energy-momentum tensor set equal to zero, [5]. In sect.

5 we obtained such solutions that characterize power law inflation. Furthermore,

with inflation presumed to last for a short period of time, we obtained for the case

n = 2 a solution for t near ti, the instant of onset of inflation. This solution dis-
played exponential dependence on time. For this case we computed the duration

of inflation and the number of e-foldings as well as an estimate for the change that
ensues in the value of the Hubble parameter from the start to the end of inflation.

The basic distinguishing feature between power law and exponential inflation ap-

pears to be in the behavior of the Ricci scalar. Exponential inflation obtains when

we assumed that R(t) can be expanded in a power series about t = ti with finite
coefficients. In particular R(ti) and Ṙ(ti) are finite. On the other hand in the case
of power law inflation these quantities exhibit singular behavior at t = t̄. Another
characteristic of our inflationary solutions is that they do not depend on the pa-

rameter ‘1 that appears in eq.(31) for f(R). This is in contrast to the inflationary
solution in four-dimensional f(R) theories where n = 2 describes the Starobin-
sky model [18]. In that case with α written as α = 1

6M2 , where the constant M
has the dimension of mass, exponential inflation is obtained with a, H and R all

depending onM , [5].

Interest in two-dimensional theories stems partially from the desire to investigate

the quantum theory in a simple setting. Hence we carried out quantization of the

theroy in the case of n = 2. The Wheeler-DeWitt equation was derived and its

solutions obtained. We were able to solve the equation exactly in the entire do-
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main of the variables, unlike the situation in the four-dimensional case [19],[27].

Interestingly we found that for α > 0 the equation for the wave function coincided
with that of the inverted oscillator. For α < 0 the wave function, under certain
conditions, turned out to be a product of two quantum harmonic oscillator wave

functions in the variables ξ = R+ a and η = R− a. In conclusion we have stud-
ied some aspects of classical and quantum cosmology in two-dimensional f(R)
theories. Clearly a lot more issues need to be investigated and we hope to return

to them in the near future.
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