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Abstract

We prove here, by the rigorous mathematical procedure, that so-called Lorentzian time
in the special theory of relativity is defined by the wave equation, where the wave of time is
the form of matter and not the Bergson physiological process in S and S’.
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We frequently learn that time in physics is defined by its measurement. Or, time is
what a clock reads. In non-relativistic physics, it is a scalar quantity and, like length,
mass, and charge, is considered as a fundamental quantity. Time can be combined
mathematically with other physical quantities to derive other concepts such as motion,
kinetic energy and time-dependent fields. In order to measure time, one can record the
number of occurrences (events) of some periodic phenomenon. The sun was the arbiter
of the flow of time.

Galileo, Newton, and others up until the 20th century thought that time was the same
for everyone everywhere. This is the basis for timelines, where time is a parameter. The
modern understanding of time is based on Einstein’s theory of relativity, in which rates
of time run differently depending on relative motion, and space and time are merged into
spacetime. In this view time is a coordinate.

Einstein proved in his well known article and book (Einstein, 1905; 1919; 1922) that
the simultaneity in the inertial system S’ moving with velocity v with regard to the inertial
system S is broken. Einstein writes (Einstein, 1905):

So we see that we cannot attach any absolute signification to the concept of simultane-
ity, but that two events which, viewed from a system of co-ordinates, are simultaneous,
can no longer be looked upon as simultaneous events when envisaged from a system which
15 1n motion relatively to that system.



So, let us write the Lorentz transformation between system S and S’.

' =y(x — vt), (1)

t'=(t = (v/c*)), (2)
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We get from eq. (2) t] = y(t — (v/c*)x1),th = y(t — (v/c*)zs). So, if 1 # x5, then
t) # t,. So, we see that we cannot attach any absolute signification to the concept of
simultaneity. The Einstein sofisticated experiment was ignored.

We prove here, by the rigorous mathematical procedure, that so-called Lorentzian time
in the special theory of relativity is defined by the wave equation, where the wave is the
form of matter and in no case the phlogiston.

We get from equation (2) the following elementary relations with ¢’ =T
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After comparison of eq. (4) with eq. (5) we get
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After application of the operator (% - %3%) to the equation (6),we get

C4
(Et - U2Tmc> = 07 (7)

which is the partial differential equation describing motion of time as some medium. So,
This is the mathematical prove that time is a form of matter.

If we perform the same analogous procedure with the x-transformation, we get the
analogous quation with 2’ = X. Or,

(Xu — " Xs0) = 0. (8)

So, we see that partial differential equatio for 7" and X is the standard wave equation
of the form

1 Ou(x,t)  O*u(w,t)
— — = 0. 9
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If we include the boundary conditions
T(0,t)=0; T(,t)=0, (10)

we can prove that the solution of the wve equation is of the form:



T=> (ak Cos hmat + by sin lwrat) sin kﬂ (11)
= l ! [

We can say that if the boundary conditions (10) are with the physical meaning, then
the solution (11) is also of the physical meaning. Such statement is in agreement with
the Wigner approach to physics because he speaks on the unreasonable effectivenses of
mathematics in the natural sciences (Wigner, 1960).

The vector form of egs. (1) and (2) is as follows (Fok, 2015):

X':x—vt+(’y—1)12(v-x—vt), (12)
v

t’:7<t—012(v-x)>. (13)

If we apply the analogous procedure with x- and t-transformation to x,t, we get

Our statements are in no case paradoxial and they are not involved in the collection
of paradoxes of relativity (Goldblatt, 1972; Terletzkii, 1966) and in the relativistic
paradoxes in American Journal of Physics. To our knowledge, our results (Lorentz-
Pardy equations (7-8) and (14-15) are not involved in any monograph of the relativity
theory (Reichenbach, 1958; Mermin, 1968; Savitt, 2011). Nevertheless, the thinking of
the relation of our results to the author results in the scientific physical journal (Pardy,
1969) is very useful.

There is no doubt that the discussion based on our wave equations for time and
space will refresh the interest in the theory of relativity described by the Lorentz-Pardy
equations of mathematical physics.
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