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1 Introduction

This paper is an introduction to Khovanov homology. We startwith a quick introduction to the
bracket polynomial, reformulating it and the Jones polynomial so that the value of an unknotted
loop is q + q−1. We then introduce enhanced states for the bracket state sum so that, in terms
of these enhanced states the bracket is a sum of monomials. Then in Section 3, we point out
that the shape of the collection of bracket states for a givendiagram is a cube and that this cube
can be taken to be a category. It is an example of acube category. We show that functors
from a cube category to a category of modules naturally have homology theories associated with
them. In Section 4 we show how to make a homology theory (Khovanov homology) from the
states of the bracket so that the enhanced states are the generators of the chain complex. We
show how a Frobenius algebra structure arises naturally from this adjacency structure for the
enhanced states. Finally we show that the resulting homology is an example of homology related
to a module functor on the cube category as described in Section 3. In Section 5, we give a
short exposition of Dror BarNatan’s tangle cobordism theory for Khovanov homology. This
theory replaces Khovanov homology by an abstract chain homotopy class of a complex of surface



cobordisms associated with the states of a knot or link diagram. In Section 6 we give a short
exposition of the Rasmussen invariant and its application to finding the four-ball genus of torus
knots. In Section 7 we give a description of Khovanov homology as the homology of a simplicial
module by following our description of the cube category in this context. I regard this section
as a step in the direction of providing an abstract simplicial homotopy theory for Khovanov
homology, but this project is not yet completed. In Section 8we discuss a quantum context for
Khovanov homology that is obtained by building a Hilbert space whose orthonormal basis is the
set of enhanced states of a diagramK. Then there is a unitary transformationUK of this Hilbert
space so that the Jones polynomialJK is the trace ofUK : JK = Trace(UK). We discuss a
generalization where the linear space of the Khovanov homology itself is taken to be the Hilbert
space. In this case we can define a unitary transformationU ′

K so that, for values ofq andt on the
unit circle, the Poincaré polynomial for the Khovanov homology is the trace ofU ′

K . Section 9 is
is a discussion of other forms of link homology and categorification with selected references.

It gives the author great pleasure to thank the members of theQuantum Topology Seminar
at the University of Illinois at Chicago for many useful conversations and to thank the Perimeter
Institute in Waterloo, Canada for their hospitality while this paper was being completed.

2 Bracket Polynomial and Jones Polynomial

The bracket polynomial [15] model for the Jones polynomial [12, 13, 14, 52] is usually described
by the expansion

〈 〉 = A〈 〉+ A−1〈 〉

Here the small diagrams indicate parts of otherwise identical larger knot or link diagrams. The
two types of smoothing (local diagram with no crossing) in this formula are said to be of typeA
(A above) and typeB (A−1 above).

〈©〉 = −A2 −A−2

〈K©〉 = (−A2 − A−2)〈K〉

〈 〉 = (−A3)〈 〉

〈 〉 = (−A−3)〈 〉

One uses these equations to normalize the invariant and makea model of the Jones polynomial.
In the normalized version we define

fK(A) = (−A3)−wr(K)〈K〉/〈©〉

where the writhewr(K) is the sum of the oriented crossing signs for a choice of orientation of
the linkK. Since we shall not use oriented links in this paper, we refer the reader to [15] for
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the details about the writhe. One then has thatfK(A) is invariant under the Reidemeister moves
(again see [15]) and the original Jones polynomialVK(t) is given by the formula

VK(t) = fK(t
−1/4).

The Jones polynomial has been of great interest since its discovery in 1983 due to its relationships
with statistical mechanics, due to its ability to often detect the difference between a knot and its
mirror image and due to the many open problems and relationships of this invariant with other
aspects of low dimensional topology.

The State Summation. In order to obtain a closed formula for the bracket, we now describe it
as a state summation. LetK be any unoriented link diagram. Define astate, S, of K to be the
collection of planar loops resulting from a choice of smoothing for each crossing ofK. There
are two choices (A andB) for smoothing a given crossing, and thus there are2c(K) states of a
diagram withc(K) crossings. In a state we label each smoothing withA or A−1 according to
the convention indicated by the expansion formula for the bracket. These labels are thevertex
weightsof the state. There are two evaluations related to a state. The first is the product of the
vertex weights, denoted〈K|S〉. The second is the number of loops in the stateS, denoted||S||.
Define thestate summation, 〈K〉, by the formula

〈K〉 =
∑

S

< K|S > δ||S||

whereδ = −A2 − A−2. This is the state expansion of the bracket. It is possible to rewrite this
expansion in other ways. For our purposes in this paper it is more convenient to think of the loop
evaluation as a sum oftwo loop evaluations, one giving−A2 and one giving−A−2. This can
be accomplished by letting each state curve carry an extra label of+1 or −1. We describe these
enhanced statesbelow. But before we do this, it will be useful for the reader to examine Figure
2. In Figure 2 we show all the states for the right-handed trefoil knot, labelling the sites withA
orB whereB denotes a smoothing that would receiveA−1 in the state expansion.

Note that in the state enumeration in Figure 2 we have organized the states in tiers so that the
state that has onlyA-smoothings is at the top and the state that has onlyB-smoothings is at the
bottom.

Changing Variables. Letting c(K) denote the number of crossings in the diagramK, if we
replace〈K〉 by A−c(K)〈K〉, and then replaceA2 by −q−1, the bracket is then rewritten in the
following form:

〈 〉 = 〈 〉 − q〈 〉

with 〈©〉 = (q + q−1). It is useful to use this form of the bracket state sum for the sake of the
grading in the Khovanov homology (to be described below). Weshall continue to refer to the
smoothings labeledq (orA−1 in the original bracket formulation) asB-smoothings.
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Figure 1:Reidemeister Moves

We catalog here the resulting behaviour of this modified bracket under the Reidemeister
moves.

〈©〉 = q + q−1

〈K©〉 = (q + q−1)〈K〉

〈 〉 = q−1〈 〉

〈 〉 = −q2〈 〉

〈 〉 = −q〈 〉

〈 〉 = 〈 〉

It follows that if we define

JK = (−1)n−qn+−2n
−〈K〉,

wheren− denotes the number of negative crossings inK andn+ denotes the number of positive
crossings inK, thenJK is invariant under all three Reidemeister moves. ThusJK is a version of
the Jones polynomial taking the valueq + q−1 on an unknotted circle.

Using Enhanced States. We now use the convention ofenhanced stateswhere an enhanced
state has a label of1 or−1 on each of its component loops. We then regard the value of theloop
q+ q−1 as the sum of the value of a circle labeled with a1 (the value isq) added to the value of a
circle labeled with an−1 (the value isq−1). We could have chosen the less neutral labels of+1
andX so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and
q−1 ⇐⇒ −1 ⇐⇒ x,

since an algebra involving1 andx naturally appears later in relation to Khovanov homology. It
does no harm to take this form of labeling from the beginning.The use of enhanced states for
formulating Khovanov homology was pointed out by Oleg Viro in [48].
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Consider the form of the expansion of this version of the bracket polynonmial in enhanced
states. We have the formula as a sum over enhanced statess :

〈K〉 =
∑

s

(−1)i(s)qj(s)

wherei(s) is the number ofB-type smoothings ins andj(s) = i(s)+λ(s), with λ(s) the number
of loops labeled1 minus the number of loops labeled−1 in the enhanced states.

One advantage of the expression of the bracket polynomial via enhanced states is that it is
now a sum of monomials. We shall make use of this property throughout the rest of the paper.

3 Khovanov Homology and the Cube Category

We are going to make a chain complex from the states of the bracket polynomial so that the
homology of this chain complex is a knot invariant. One way tosee how such a homology theory
arises is to step back and note that the collection of states for a diagramK forms a category in
the shape of a cube. A functor from such a category to a category of modules gives rise to a
homology theory in a natural way, as we explain below.

Examine Figure 2 and Figure 3. In Figure 2 we show all the standard bracket states for the
trefoil knot with arrows between them whenever the state at the output of the arrow is obtained
from the state at the input of the arrow by a single smoothing of a site of typeA to a site of type
B. The abstract structure of this collection of states is a category with objects of the form〈ABA〉
where this symbol denotes one of the states in the state diagram of Figure 2. In Figure 3 we
illustrate this cube category (the states are arranged in the form of a cube) by replacing the states
in Figure 2 by symbols〈XY Z〉 where each literal is either anA or aB. A typical generating
morphism in the3-cube category is

〈ABA〉 −→ 〈BBA〉.

We formalize this way of looking at the bracket states as follows. LetS(K) denote a category
associated with the states of the bracket for a diagramK whose objects are the states, with sites
labeledA andB as in Figure 2. A morphism in this category is an arrow from a state with a given
number ofA’s to a state with fewerA’s.

LetDn = {A,B}n be then-cube category whose objects are then-sequences from the set{A,B}
and whose morphisms are arrows from sequences with greater numbers ofA’s to sequences with
fewer numbers ofA’s. ThusDn is equivalent to the poset category of subsets of{1, 2, · · ·n}.
We make a functorR : Dn −→ S(K) for a diagramK with n crossings as follows. We map
sequences in the cube category to bracket states by choosingto label the crossings of the diagram
K from the set{1, 2, · · ·n}, and letting this functor take abstractA’s andB’s in the cube category
to smoothings at those crossings of typeA or typeB. Thus each sequence in the cube category
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Figure 2:Bracket States and Khovanov Complex
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Figure 3:Cube Category
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is associated with a unique state ofK whenK hasn crossings. By the same token, we define
a functorS : S(K) −→ Dn by associating a sequence to each state and morphisms between
sequences corresponding to the state smoothings. With these conventions, the two compositions
of these morphisms are the identity maps on their respectivecategories.

Let M be a pointed category with finite sums, and letF : Dn −→ M be a functor. In our
caseM will be a category of modules andF will carry n-sequences to certain tensor powers
corresponding to the standard bracket states of a knot or link K. We postpone this construction
for a moment, and point out that there is a natural structure of chain complex associated with the
functorF . First note that each object inDn has the form

X = 〈X0 · · ·Xn−1〉

where eachXi equals eitherA orB and we have morphisms

di : 〈X0 · · ·Xi · · ·Xn−1〉 −→ 〈X0 · · · X̄i · · ·Xn−1〉

wheneverXi = A and (by definition)X̄i = B. We then define

∂i = C(di) : C〈X0 · · ·Xi · · ·Xn−1〉 −→ C〈X0 · · · X̄i · · ·Xn−1〉

wheneverdi is defined. We then define the chain complexC by

Ck =
⊕

X

C〈X0 · · ·Xn−1〉

where each sequenceX = 〈X0 · · ·Xn−1〉 hask B’s. With this we define

∂ : Ck −→ Ck+1

by the formula
∂x = Σn−1

i=0 (−1)c(X,i)∂i(x)

for x ∈ CX = C〈X0 · · ·Xn−1〉 andc(X, i) denotes the number ofA’s in the sequenceX that
precedeXi.

We want∂2 = 0 and it is easy to see that this is equivalent to the condition that∂i∂j = ∂j∂i
for i 6= j whenever these maps and compositions are defined. We can assume that the functorF
has this property, or we can build it in axiomatically by adding the corresponding relations to the
cube category in the formdidj = djdi for i 6= j whenever these maps are defined. In the next
section we shall see that there is a natural way to define the maps in the state category so that this
condition holds. Once we axiomatize this commutation relation at the level of the state category
or the cube category, then the functorF will induce a chain complex and homology as above.

In this way, we see that a suitable functor from the cube category to a module category allows
us to define homology that is modeled on the “shape” of the cube. The set of bracket states forms
a natural functorial image of the cube category, and that makes it possible to define the Khovanov
chain complex. In terms of the bracket states, we will map each state loop to a specific module
V , and each state to a tensor power ofV to the number of loops in the state. The details of this
construction are in the next section.
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We use a specific construction for the Khovanov complex that is directly related to the en-
hanced states for the bracket polynomial, as we will see in the next section. In this construction
we will use the enhanced states, regarding each loop as labeled with either1 or x for a module
V = k[x]/(x2) associated with the loop (wherek = Z/2Z or k = Z.) Thus the two labelings
of the loop will corespond to the two generators of the moduleV. A state that is a collection of
loops will be associated withV ⊗r wherer is the number of loops in the state. In this way we
will obtain a functor from the state category to a module category, and at the same time it will
happen that any single enhanced state will correspond to a generator of the chain complex. In the
next section we show how naturally this algebra appears in relation to the enhanced states. We
then return to the categorical point of view and see how, surface cobordisms of circles provide an
abstract category for the invariant.

4 Khovanov Homology

In this section, we describe Khovanov homology along the lines of [31, 3], and we tell the story
so that the gradings and the structure of the differential emerge in a natural way. This approach to
motivating the Khovanov homology uses elements of Khovanov’s original approach, Viro’s use of
enhanced states for the bracket polynomial [48], and Bar-Natan’s emphasis on tangle cobordisms
[2, 3]. We use similar considerations in our paper [27].

Two key motivating ideas are involved in finding the Khovanovinvariant. First of all, one
would like to categorifya link polynomial such as〈K〉. There are many meanings to the term
categorify, but here the quest is to find a way to express the link polynomial as agraded Euler
characteristic〈K〉 = χq〈H(K)〉 for some homology theory associated with〈K〉.

We will use the bracket polynomial and its enhanced states asdescribed in the previous sec-
tions of this paper. To see how the Khovanov grading arises, consider the form of the expansion
of this version of the bracket polynomial in enhanced states. We have the formula as a sum over
enhanced statess :

〈K〉 =
∑

s

(−1)i(s)qj(s)

wherei(s) is the number ofB-type smoothings ins, λ(s) is the number of loops ins labeled
1 minus the number of loops labeledX, andj(s) = i(s) + λ(s). This can be rewritten in the
following form:

〈K〉 =
∑

i ,j

(−1)iqjdim(Cij)

where we defineCij to be the linear span (over the complex numbers for the purpose of this paper,
but over the integers or the integers modulo two for other contexts) of the set of enhanced states
with i(s) = i andj(s) = j. Then the number of such states is the dimensiondim(Cij).
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We would like to have a bigraded complex composed of theCij with a differential

∂ : Cij −→ Ci+1 j .

The differential should increase thehomological gradingi by1 and preserve thequantum grading
j. Then we could write

〈K〉 =
∑

j

qj
∑

i

(−1)idim(Cij) =
∑

j

qjχ(C• j),

whereχ(C• j) is the Euler characteristic of the subcomplexC• j for a fixed value ofj.

This formula would constitute a categorification of the bracket polynomial. Below, we shall see
how the original Khovanov differential∂ is uniquely determined by the restriction thatj(∂s) =
j(s) for each enhanced states. Sincej is preserved by the differential, these subcomplexesC• j

have their own Euler characteristics and homology. We have

χ(H(C• j)) = χ(C• j)

whereH(C• j) denotes the homology of the complexC• j. We can write

〈K〉 =
∑

j

qjχ(H(C• j)).

The last formula expresses the bracket polynomial as agraded Euler characteristicof a homology
theory associated with the enhanced states of the bracket state summation. This is the categorifi-
cation of the bracket polynomial. Khovanov proves that thishomology theory is an invariant of
knots and links (via the Reidemeister moves of Figure 1), creating a new and stronger invariant
than the original Jones polynomial.

We will construct the differential in this complex first for mod-2 coefficients. The differential
is based on regarding two states asadjacentif one differs from the other by a single smoothing
at some site. Thus if(s, τ) denotes a pair consisting in an enhanced states and siteτ of that
state withτ of typeA, then we consider all enhanced statess′ obtained froms by smoothing at
τ and relabeling only those loops that are affected by the resmoothing. Call this set of enhanced
statesS ′[s, τ ]. Then we shall define thepartial differential∂τ (s) as a sum over certain elements
in S ′[s, τ ], and the differential by the formula

∂(s) =
∑

τ

∂τ (s)

with the sum over all typeA sitesτ in s. It then remains to see what are the possibilities for∂τ (s)
so thatj(s) is preserved.

Note that ifs′ ∈ S ′[s, τ ], theni(s′) = i(s) + 1. Thus

j(s′) = i(s′) + λ(s′) = 1 + i(s) + λ(s′).

From this we conclude thatj(s) = j(s′) if and only if λ(s′) = λ(s)− 1. Recall that

λ(s) = [s : +]− [s : −]

where[s : +] is the number of loops ins labeled+1, [s : −] is the number of loops labeled−1
(same as labeled withx) andj(s) = i(s) + λ(s).
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Proposition. The partial differentials∂τ (s) are uniquely determined by the condition thatj(s′) =
j(s) for all s′ involved in the action of the partial differential on the enhanced states. This unique
form of the partial differential can be described by the following structures of multiplication and
comultiplication on the algebraV = k[x]/(x2) wherek = Z/2Z for mod-2 coefficients, or
k = Z for integral coefficients.

1. The element1 is a multiplicative unit andx2 = 0.

2. ∆(1) = 1⊗ x+ x⊗ 1 and∆(x) = x⊗ x.

These rules describe the local relabeling process for loopsin a state. Multiplication corresponds
to the case where two loops merge to a single loop, while comultiplication corresponds to the
case where one loop bifurcates into two loops.

Proof. Using the above description of the differential, suppose that there are two loops atτ that
merge in the smoothing. If both loops are labeled1 in s then the local contribution toλ(s) is 2.
Let s′ denote a smoothing inS[s, τ ]. In order for the localλ contribution to become1, we see
that the merged loop must be labeled1. Similarly if the two loops are labeled1 andX, then the
merged loop must be labeledX so that the local contribution forλ goes from0 to−1. Finally, if
the two loops are labeledX andX, then there is no label available for a single loop that will give
−3, so we define∂ to be zero in this case. We can summarize the result by saying that there is a
multiplicative structurem such thatm(1, 1) = 1, m(1, x) = m(x, 1) = x,m(x, x) = 0, and this
multiplication describes the structure of the partial differential when two loops merge. Since this
is the multiplicative structure of the algebraV = k[x]/(x2), we take this algebra as summarizing
the differential.

Now consider the case wheres has a single loop at the siteτ. Smoothing produces two loops.
If the single loop is labeledx, then we must label each of the two loops byx in order to makeλ
decrease by1. If the single loop is labeled1, then we can label the two loops byx and1 in either
order. In this second case we take the partial differential of s to be the sum of these two labeled
states. This structure can be described by taking a coproduct structure with∆(x) = x ⊗ x and
∆(1) = 1⊗ x+ x⊗ 1. We now have the algebraV = k[x]/(x2) with productm : V ⊗ V −→ V
and coproduct∆ : V −→ V ⊗ V, describing the differential completely. This completes the
proof. //

Partial differentials are defined on each enhanced states and a siteτ of typeA in that state.
We consider states obtained from the given state by smoothing the given siteτ . The result of
smoothingτ is to produce a new states′ with one more site of typeB thans. Formings′ from s
we either amalgamate two loops to a single loop atτ , or we divide a loop atτ into two distinct
loops. In the case of amalgamation, the new states acquires the label on the amalgamated circle
that is the product of the labels on the two circles that are its ancestors ins. This case of the
partial differential is described by the multiplication inthe algebra. If one circle becomes two
circles, then we apply the coproduct. Thus if the circle is labeledX, then the resultant two circles
are each labeledX corresponding to∆(x) = x⊗x. If the orginal circle is labeled1 then we take
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the partial boundary to be a sum of two enhanced states with labels1 andx in one case, and labels
x and1 in the other case, on the respective circles. This corresponds to∆(1) = 1 ⊗ x + x ⊗ 1.
Modulo two, the boundary of an enhanced state is the sum, overall sites of typeA in the state, of
the partial boundaries at these sites. It is not hard to verify directly that the square of the boundary
mapping is zero (this is the identity of mixed partials!) andthat it behaves as advertised, keeping
j(s) constant. There is more to say about the nature of this construction with respect to Frobenius
algebras and tangle cobordisms. In Figures 4,5 and 6 we illustrate how the partial boundaries can
be conceptualized in terms of surface cobordisms. Figure 4 shows how the partial boundary
corresponds to a saddle point and illustrates the two cases of fusion and fission of circles. The
equality of mixed partials corresponds to topological equivalence of the corresponding surface
cobordisms, and to the relationships between Frobenius algebras [23] and the surface cobordism
category. In particular, in Figure 6 we show how in a key case of two sites (labeled 1 and 2 in
that Figure) the two orders of partial boundary are

∂2∂1 = (1⊗m) ◦ (∆⊗ 1)

and
∂1∂2 = ∆ ◦m.

In the Frobenius algebraV = k[x]/(x2) we have the identity

(1⊗m) ◦ (∆⊗ 1) = ∆ ◦m.

Thus the Frobenius algebra implies the identity of the mixedpartials. Furthermore, in Figure
5 we see that this identity corresponds to the topological equivalence of cobordisms under an
exchange of saddle points.

In Figures 7 and 8 we show another aspect of this algebra. As Figure 7 illustrates, we can
consider cup (minimum) and cap (maximum) cobordisms that gobetween the empty set and a
single circle. With the categorical arrow going down the page, the cap is a mapping from the base
ring k to the moduleV and we denote this mapping byη : k −→ V . It is theunit for the algebra
V and is defined byη(1) = 1V , taking1 in k to 1V in V. The cup is a mapping fromV to k and
is denoted byǫ : V −→ k. This is thecounit. As Figure 7 illustrates, we need a basic identity
about the counit which reads

Σǫ(a1)a2 = a

for anya ∈ V where
∆(a) = Σa1 ⊗ a2.

The summation is over an appropriate set of elements inv⊗ V as in our specific formulas for the
algebrak[x]/(x2). Of course we also demand

Σa1ǫ(a2) = a

for anya ∈ V. With these formulas about the counit and unit in place, we seethat cobordisms
will give equivalent algebra when one cancels a maximum or a minimum with a saddle point,
again as shown in Figure 7.
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Note that for our algebraV = k[x]/(x2), it follows from the counit identies of the last para-
graph that

ǫ(1) = 0

and
ǫ(x) = 1.

In fact, Figure 8 shows a formula that holds in this special algebra. The formula reads

ǫ(ab) = ǫ(ax)ǫ(b) + ǫ(a)ǫ(bx)

for any a, b ∈ V. As the rest of Figure 8 shows, this identity means that a single tube in any
cobordism can be cut, replacing it by a cups and a caps in a linear combination of two terms. The
tube-cutting relation is shown in its most useful form at thebottom of Figure 8. In Figure 8, the
black dots are symbols standing for the special elementx in the algebra.

It is important to note that we have a nonsingular pairing

〈 | 〉 : V ⊗ V −→ k

defined by the equationn
〈a|b〉 = ǫ(ab).

One can define a Frobenius algebra by starting with the existence of a non-singular bilinear pair-
ing. In fact, a finite dimensional associative algebra with unit defined over a unital commutative
ring k is said to be aFrobenius algebraif it is equipped with a non-degenerate bilinear form

〈 | 〉 : V ⊗ V −→ k

such that
〈ab|c〉 = 〈a|bc〉

for all a, b, c in the algebra. The other mappings and the interpretation interms of cobordisms
can all be constructed from this definition. See [23].

Remark on Grading and Invariance. In Section 2 we showed how the bracket, using the
variableq, behaves under Reidemeister moves. These formulas correspond to how the invariance
of the homology works in relation to the moves. We have that

JK = (−1)n−qn+−2n
−〈K〉,

wheren− denotes the number of negative crossings inK andn+ denotes the number of posi-
tive crossings inK. J(K) is invariant under all three Reidemeister moves. The corresponding
formulas for Khonavov homology are as follows

JK = (−1)n−qn+−2n
−〈K〉 =

12
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Figure 4:SaddlePoints and State Smoothings

(−1)n−qn+−2n
−Σi,j(−1)iajdim(H i,j(K) =

Σi,j(−1)i+n+qj+n+−2n
−1dim(H i,j(K)) =

Σi,j(−1)iqjdim(H i−n
−
,j−n++2n

−(K)).

It is often more convenient to define thePoincaŕe polynomialfor Khovanov homology via

PK(t, q) = Σi,jt
iqjdim(H i−n

−
,j−n++2n

−(K)).

The Poincaré polynomial is a two-variable polynomial invariant of knots and links, generalizing
the Jones polynomial. Each coefficient

dim(H i−n
−
,j−n++2n

−(K))

is an invariant of the knot, invariant under all three Reidemeister moves. In fact, the homology
groups

H i−n
−
,j−n++2n

−(K)

are knot invariants. The grading compensations show how thegrading of the homology can
change from diagram to diagram for diagrams that represent the same knot.

Remark on Integral Differentials. Choose an ordering for the crossings in the link diagramK
and denote them by1, 2, · · ·n. Let s be any enhanced state ofK and let∂i(s) denote the chain
obtained froms by applying a partial boundary at thei-th site ofs. If the i-th site is a smoothing
of typeA−1, then∂i(s) = 0. If the i-th site is a smoothing of typeA, then∂i(s) is given by the
rules discussed above (with the same signs). The compatibility conditions that we have discussed
show that partials commute in the sense that∂i(∂j(s)) = ∂j(∂i(s)) for all i andj.One then defines
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signed boundary formulas in the usual way of algebraic topology. One way to think of this regards
the complex as the analogue of a complex in de Rham cohomology. Let {dx1, dx2, · · · , dxn} be
a formal basis for a Grassmann algebra so thatdxi ∧ dxj = −dxj ∧ dxi Starting with enhanced
statess in C0(K) (that is, states with allA-type smoothings) define formally,di(s) = ∂i(s)dxi
and regarddi(s) as identical with∂i(s) as we have previously regarded it inC1(K). In general,
given an enhanced states in Ck(K) with B-smoothings at locationsi1 < i2 < · · · < ik, we
represent this chain ass dxi1 ∧ · · · ∧ dxik and define

∂(s dxi1 ∧ · · · ∧ dxik) =
n∑

j=1

∂j(s) dxj ∧ dxi1 ∧ · · · ∧ dxik ,

just as in a de Rham complex. The Grassmann algebra automatically computes the correct signs
in the chain complex, and this boundary formula gives the original boundary formula when we
take coefficients modulo two. Note, that in this formalism, partial differentials∂i of enhanced
states with aB-smoothing at the sitei are zero due to the fact thatdxi ∧ dxi = 0 in the Grass-
mann algebra. There is more to discuss about the use of Grassmann algebra in this context. For
example, this approach clarifies parts of the construction in [28].

It of interest to examine this analogy between the Khovanov (co)homology and de Rham
cohomology. In that analogy the enhanced states correspondto the differentiable functions on a
manifold. The Khovanov complexCk(K) is generated by elements of the forms dxi1∧· · ·∧dxik
where the enhanced states hasB-smoothings at exactly the sitesi1, · · · , ik. If we were to follow
the analogy with de Rham cohomology literally, we would define a new complexDR(K) where
DRk(K) is generated by elementss dxi1 ∧ · · · ∧ dxik wheres is anyenhanced state of the link
K. The partial boundaries are defined in the same way as before and the global boundary formula
is just as we have written it above. This gives anewchain complex associated with the linkK.
Whether its homology contains new topological informationabout the linkK will be the subject
of a subsequent paper.

In the case of de Rham cohomology, we can also look for compatible unitary transformations.
LetM be a differentiable manifold andC(M) denote the DeRham complex ofM over the com-
plex numbers. Then for a differential form of the typef(x)ω in local coordinatesx1, · · · , xn and
ω a wedge product of a subset ofdx1 · · ·dxn, we have

d(fω) =
n∑

i=1

(∂f/∂xi)dxi ∧ ω.

Hered is the differential for the DeRham complex. ThenC(M) has as basis the set of|f(x)ω〉
whereω = dxi1 ∧ · · · ∧ dxik with i1 < · · · < ik. We could achieveUd + dU = 0 if U is a
very simple unitary operator (e.g. multiplication by phases that do not depend on the coordinates
xi) but in general it will be an interesting problem to determine all unitary operatorsU with this
property.
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A further remark on de Rham cohomology. There is another relation with the de Rham com-
plex: In [41] it was observed that Khovanov homology is related to Hochschild homology and
Hochschild homology is thought to be an algebraic version ofde Rham chain complex (cyclic
cohomology corresponds to de Rham cohomology), compare [45].

5 The Cube Category and the Tangle Cobordism Structure of
Khovanov Homology

We can now connect the constructions of the last section withthe homology construction via the
cube category. Here it will be convenient to think of the state categoryS(K) as a cube category
with extra structure. Thus we will denote the bracket statesby sequences ofA’s andB’s as
in Figures 2 and 3. And we shall regard the maps such asd2 : 〈AABA〉 −→ 〈ABBA〉 as
corresponding to re-smoothings of bracket states that either join or separate state loops. We take
V = k[x]/(x2) with the coproduct structure as given in the previous section. The maps from
m : V ⊗ V −→ V and∆ : V −→ V ⊗ V allow us to define the images of the resmoothing maps
di under a functorF : S(K) −→ M whereM is the category generated byV by taking tensor
powers ofV and direct sums of these tensor powers. It then follows that the homology we have
described in the previous section is exactly the homology associated with this functor.

The material in the previous section also suggests a modification of the state categoryS(K).
Instead of taking the maps in this category to be simply the abstract arrows generated by ele-
mentary re-smoothings of states fromA to B, we can regard each such smoothing as a surface
cobordism from the set of circles comprising the domain state to the set of circles comprising the
codomain state. With this, in mind, two such cobordisms represent equivalent morphisms when-
ever the corresponding surfaces are homeomorphic relativeto their boundaries. Call this category
CobS(K). We then easily generalize the observations of the previous section, particularly Fig-
ures 4, 5 and 6, to see that we have the desired commuting relationsdidj = djdi (for i 6= j) in
CobS(K) so that any functor fromCobS(K) to a module category will have a well-defined chain
complex and associated homology. This applies, in particular to the functor we have constructed,
using the Frobenius algebraV = k[x]/(x2).

In [3] BarNatan takes the approach using surface cobordismsa step further by making a
categorical analog of the chain complex. For this purpose welet CobS(K) become an additive
category. Maps between specific objectsX andY added formally and the setMaps(X, Y ) is
a module over the integers. More generally, letC be an additive category. In order to create
the analog of a chain complex, letMat(C) denote theMatrix Category ofC whose objects are
n-tuples (vectors) of objects ofC (n can be any natural number) and whose morphisms are in the
form of a matrixm = (mij) of morphisms inC where we write

m : O −→ O′
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and
mij : Oi −→ O′

j

for
O = (O1, · · · , On),

O′ = (O′
1, · · · , O

′
m).

HereOi andO′
j are objects inC while O andO′ are objects inMat(C). Composition of mor-

phisms inMat(C) follows the pattern of matrix multiplication. If

n : O′ −→ O′′

then
n ◦m : O −→ O′′

and
(n ◦m)i,j = Σkni,k ◦mk,j

where the compositions in the summation occur in the category C.

We then define thecategory of complexes overC, denotedKom(Mat(C)) to consist of se-
quences of objects ofMat(C) and maps between them so that consecutively composed maps are
equal to zero.

· · · −→ Ok −→ Ok+1 −→ Ok+2 −→ · · · .

Here we let∂k : Ok −→ O′k+1 denote the differential in the complex and we assme that∂k+1∂k =
0. A morphism between complexesO∗ andO′∗ consists in a family of mapsfk : Ok −→ O′k

such that∂′kfk = fk+1∂k. Such morphisms will be calledchain maps.

At this abstract level, we cannot calculate homology since kernels and cokernels are not
available, but we can define thehomotopy typeof a complex inKom(Mat(C)). We say that two
chain mapsf : O −→ O′ andg : O −→ O′ arehomotopicif there is a sequence of mappings
Hk : O

k −→ Ok−1 such that
f − g = H∂ + ∂H.

Specifically, this means that
fk − gk = Hk+1∂k + ∂k+1Hk.

Note that ifφ = H∂ + ∂H, then
∂φ = ∂H∂ = φ∂.

Thus any suchφ is a chain map. We call two complexesO andO′ homotopy equivalentif there
are chain mapsF : O −→ O′ andG : O′ −→ O such that bothFG andGF are homotopic to the
identity map ofO andO′ respectively. The homotopy type of a complex is an abstract substitute
for the homology since, in an abelian category (where one cancompute homology) homology is
an invariant of homotopy type.
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We are now in a position to work with the categoryKom(Mat(CobS(K))) whereK is a link
diagram. The question is, what extra equivalence relation on the categoryCobS(K) will ensure
that the homotopy types inKom(Mat(CobS(K))) will be invariant under Reidemeister moves
on the diagramK.

BarNatan [3] gives an elegant answer to this question. His answer is illustrated in Figure 9
where we show the4Tu Relation, theSphere Relationand theTorus Relation. The key relation
is the the4Tu relation, which serves a number of purposes, including being a basic homotopy
in the categoryKom(Mat(CobS(K))). Note that the4Tu relation can be described as follows:
There are four local bits of surface, call themS1, S2, S3, S4. Let Ci,j denote this configuration
with a tube connectingSi andSj. Then in the cobordism category we take the identity

C1,2 + C3,4 = C1,3 + C2,4.

It is a good exercise for the reader to show that the4Tu relation follows from the tube cutting
relation of Figure 8. The Sphere and Torus relations assert that the 2-sphere has value 0 and that
the torus has value 2, just as we have seen by using the Frobenius algebra in Figure 7.

To illustrate how things work once we factor by these relations, we show in Figures 10 and
11 how one sees the homotopy equivalance of the complexes fora diagram before and after the
second Reidemeister move. In Figure 10 we show the complexesand indicate chain mapsF
andG between them and homotopies in the complex for the diagram before it is simplified by
the Reidemeister move. In Figure 11 we show these maps and their compositions in the form
of a four-term identity. The reader should first just look at the identity of involving these four
cobordisms and recognize that it is exactly the4Tu relation. On the other hand, each of the
terms in the relation is factored into mappings invvolvingF1, G1 and the homotopiesH1 and
H2 and the boundary mappings in the complex. Study of Figure 11 will convince the reader
that the complexes before and after the second Reidemeistermove are homotopy equivalent. A
number of details are left to the reader. For example, note that in Figure 10 we have indicated
the categorical chain complexesZ andW by showing only how they differ locally near the
change corresponding to a Reidemeister two move. We give, via Figures 10 and 11, chain maps
F : W −→ Z andG : Z −→ W. These maps consist in a particular cobordism on one part of
the complex and an identity map on the other part of the complex. We have specifically labeled
parts of these mappings byF1 and byG1. Using the implicit definitions ofF1 andG1 given in
Figure 11, the reader will easily see thatG1F1 = 0 since this composition includes a2-sphere.
From this it follows thatGF is the identity mapping on the complexW. We also leave to the
reader to check that the mappingsF andG commute with the boundary mappings so that they
are mappings of complexes. The part of the homotopy indicated shows thatFG is homotopic
to the identity (up to sign) and so shows that the complexesZ andW are homotopy equivalent.
One needs the value of the torus equal to2 for homotopy invariance under the first Reidemeister
move. This is a fragment of the full derivation of homotopy equivalences corresponding to all
three Reidemeister moves that is given in the paper [3].
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6 Other Frobenius Algebras and Rasmussen’s Theorem

Lee [25] makes another homological invariant of knots and links by using a different Frobenius
algebra. She takes the algebraA = k[x]/(x2 − 1) with

x2 = 1,

∆(1) = 1⊗ x+ x⊗ 1,

∆(x) = x⊗ x+ 1⊗ 1,

ǫ(x) = 1,

ǫ(1) = 0.

This gives a link homology theory that is distinct from Khovanov homology. In this theory, the
quantum gradingj is not preseved, but we do have that

j(∂(α)) ≥ j(α)

for each chainα in the complex. This means thatone can usej to filter the chain complex for
the Lee homology.The result is a spectral sequence that starts from Khovanov homology and
converges to Lee homology.

Lee homology is simple. One has that the dimension of the Lee homology is equal to2comp(L)

wherecomp(L) denotes the number of components of the linkL. Up to homotopy, Lee’s ho-
mology has a vanishing differential, and the complex behaves well under link concondance. In
his paper [4] Dror BarNatan remarks ”In a beautiful article Eun Soo Lee introduced a second
differential on the Khovanov complex of a knot (or link) and showed that the resulting (double)
complex has non-interesting homology. This is a very interesting result.” Rasmussen [44] uses
Lee’s result to define invariants of links that give lower bounds for the four-ball genus, and deter-
mine it for torus knots. This gives an (elementary) proof of aconjecture of Milnor that had been
previously shown using gauge theory by Kronheimer and Mrowka [24].

Rasmussen’s result uses the Lee spectral sequence. We have the quantum (j) grading for a di-
agramK and the fact that for Lee’s algebraj(∂(s)) ≥ j(s).Rasmussen uses a normalized version
of this grading denoted byg(s). Then one makes a filtrationF kC∗(K) = {v ∈ C∗(K)|g(v) ≥ k}
and givenα ∈ Lee∗(K) define

S(α) := max{g(v)|[v] = α}

smin(K) := min{S(α)|α ∈ Lee∗(K), α 6= 0}

smax(K) := max{S(α)|α ∈ Lee∗(K), α 6= 0}

and
s(K) := (1/2)(smin(K) + smax(K)).

This last average ofsmin andsmax is the Rasmussen invariant.
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We now enter the following sequence of facts:

1. s(K) ∈ Z.

2. s(K) is additive under connected sum.

3. If K∗ denotes the mirror image of the diagramK, then

s(K∗) = −s(K).

4. If K is a positive knot diagram (all positive crossings), then

s(K) = −r + n+ 1

wherer denotes the number of loops in the canonical oriented smoothing (this is the same
as the number of Seifert circuits in the diagramK) andn denotes the number of crossings
in K.

5. For a torus knotKa,b of type(a, b), s(Ka,b) = (a− 1)(b− 1).

6. |s(K)| ≤ 2g∗(K) whereg∗(K) is the least genus spanning surface forK in the four ball.

7. g∗(Ka,b) = (a− 1)(b− 1)/2. This is Milnor’s conjecture.

This completes a very skeletal sketch of the construction and use of Rasmussen’s invariant.

7 The Simplicial Structure of Khovanov Homology

Let S denote the set of (standard) bracket states for a link diagram K. One way to describe the
Khovanov complex is to associate to each state loopλ a moduleV isomorphic to the algebra
k[x]/(x2) with coproduct as we have described in the previous sections. The generators1 and
x of this algebra can then be regarded as the two possible enhancements of the loopλ. In the
same vein we associate to a stateS the tensor product of copies ofV , one copy for each loop
in the state. The local boundaries are defined exactly as before, and the Khovanov complex is
the direct sum of the modules associated with the states of the link diagram. We will use this
point of view in the present section, and we shall describe Khovanov homology in terms of the
n-cube category and an associated simplicial object. The purpose of this section is to move
towards, albeit in an abstract manner, a description of Khovanov homology as the homology of a
topological space whose homotopy type is an invariant of theknot of the underlying knot or link.
We do not accomplish this aim, but the constructions given herein may move toward that goal.
An intermediate possibility would be to replace the Khovanov homology by an abstract space or
simplicial object whose generalized homotopy type was an invariant of the knot or link.
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Let Dn = {A,B}n be then-cube category whose objects are then-sequences from the
set{A,B} and whose morphisms are arrows from sequences with greater numbers ofA’s to
sequences with fewer numbers ofA’s. ThusDn is equivalent to the poset category of subsets of
{1, 2, · · ·n}. Let M be a pointed category with finite sums, and letF : Dn −→ M be a functor.
In our caseM is a category of modules (as described above) andF carriesn-sequences to certain
tensor powers corresponding to the standard bracket statesof a knot or linkK.We map sequences
to states by choosing to label the crossings of the diagramK from the set{1, 2, · · ·n}, and letting
the functor take abstractA’s andB’s in the cube category to smoothings at those crossings of type
A or typeB. Thus each sequence in the cube category is associated with a unique state ofK when
K hasn crossings. Nevertheless, we shall describe the construction more generally.

For the functorF we first construct a semisimplicial objectC(F ) overM, where a semisim-
plicial object is a simplicial object without degeneracies. This means that it has partial boundaries
analogous to the partial boundaries that we have discussed before but none of the degeneracy
maps that are common to simplicial theory (see [46] Chapter 1). Fork ≥ 0 we set

C(F )k = ⊕v∈Dn

k
F(v)

whereDn
k denotes those sequences in the cube category withk A’s. Note that we are indexing

dually to the upper indexing in the Khovanov homology sections of this paper where we counted
the number ofB’s in the states.

We introduce face operators (partial boundaries in our previous terminology)

di : C(F )k −→ C(F )k−1

for 0 ≤ i ≤ k with k ≥ 1 as follows:di is trivial for i = 0 and otherwisedi acts onF(v) by
the mapF(v) −→ F(v′) wherev′ is the sequence resulting from replacing thei-thA byB. The
operatorsdi satisfy the usual face relations of simplicial theory:

didj = dj−1di

for i < j.

We now expandC(F ) to a simplicial objectS(F ) overM by applying freely degeneracies to
theF(v)’s. Thus

S(F )m = ⊕v∈Dn

k
,k+t=m si1 · · · sitF(v)

wherem > i1 > · · · > it ≥ 0 and these degeneracy operators are applied freely modulo the usual
(axiomatic) relations among themselves and with the face operators. ThenS(F ) has degeneracies
via formal application of degeneracy operators to these forms, and has face operators extending
those ofC(F). It is at this point we should remark that in our knot theoreticconstruction there is
only at this point an opportunity for formal extension of degeneracy operators above the number
of crossings in the given knot or link diagram since to make specific degeneracies would involve
the creation of new diagrammatic sites. There may be a natural construction of this sort and if
there is, such a construction could lead to a significant homotopy theory for Khovanov homology.
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When the functorF : Dn −→ M goes to an abelian categoryM, as in our knot theoretic
case, we can recover the homology groups via

H⋆NS(F) ∼= H⋆C(F)

whereNS(F is the normalized chain complex ofS(F). This completes the abstract simplicial
description of this homology.

8 Quantum Comments

States of a quantum system are represented by unit vectors ina Hilbert space. Quantum pro-
cesses are unitary transformations applied to these state vectors. In an appropriate basis for the
HIlbert space, each basis vector represesents a possible measurement. If|ψ〉 is a unit vector, then,
upon measurement, one of the basis vectors will appear with probability, the absolute square of
its coefficient in|ψ〉. One can, in principle, find the trace of a given unitary transformation by
instantiating it in a certain quantum system and making repeated measurements on that system.
Such a scheme, in the abstract, is called a quantum algorithm, and in the concrete is called a
quantum computer. One well-known quantum algorithm for determining the trace of a unitary
matrix is called the “Hadamard Test” [47].

In [19] we consider the Jones polynomial and Khovanov homology in a quantum context. In
this section we give a sketch of these ideas. Recall from Section 2 that we have the following
formula for the Jones polynomial.

JK = (−1)n−qn+−2n
−〈K〉.

Using the enhanced states formulation of Section 2, we form aHilbert spaceH(K) with or-
thonormal basis the set of enhanced states ofK. For the Hilbert space we denote a basis element
by |s〉 wheres is an enhanced state of the diagramK. Now usingq as in Section 2, letq be any
point on the unit circle in the complex plane. DefineUK : H(K) −→ H(K) by the formula

UK |s〉 = (−1)i(s)+n
−qj(s)+n+−2n

−|s〉.

ThenUK defines a unitary transformation of the Hilbert space and we have that

JK = Trace(UK).

The Hadamard Test applied to this unitary transformation gives a quantum algorithm for the
Jones polynomial. This is not the most efficient quantum algorithm for the Jones polynomial.
Unitary braid group representions can do better [20, 21, 1].But this algorithm has the conceptual
advantage of being directly related to Khonavov homology. In particular, letC i,j be the subspace
of H(K) with basis the set of enhanced states|s〉 with i(s) = i andj(s) = j. ThenH(K) is the
direct sum of these subspaces and we see thatH(K) is identical with the Khovanov complex for
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K with coefficients in the complex numbers. Furthermore, letting ∂ : H(K) −→ H(K) be the
boundary mapping that we have defined for the Khovanov complex, we have

∂ ◦ UK + UK ◦ ∂ = 0.

ThusUK induces a mapping on the Khovanov homology ofK. As a linear space, the Khovanov
homology ofK,

Homology(H(K)) = Kernel(∂)/Image(∂)

is also a Hilbert space on whichUK acts and for which the trace yields the Jones polynomial.

If we are given more information about the Khovanov homologyas a space, for example if
we are given a basis forH i−n

−
,j−n++2n

−(K) for eachi andj, then we can extendU to act on
H i−n

−
,j−n++2n

−(K) as an eigenspace with eigenvaluetiqj whereq andt are chosen unit complex
numbers. Then we have an extendedU ′

K with

U ′
K |α〉 = tiqj|α〉

for eachα ∈ H i−n
−
,j−n++2n

−(K). With this extension we have that the trace ofU ′
K recovers a

specialization of the Poincaré polynomial (Section 4) forthe Khovanov homology.

Trace(U ′
K) = Σi,jt

iqjdim(H i−n
−
,j−n++2n

−(K)) = PK(t, q).

Thus, in principle, we formulate a quantum algorithm for specializations of the Poincarè polyno-
mial for Khovanov homolgy.

Placing Khovanov homology in an appropriate quantum mechanical, quantum information
theoretic, or quantum field theory context is a fundamental question that has been considered
by a number of people, including Sergei Gukov [10, 11] and Edward Witten [52, 53, 54]. The
constructions discussed here are elementary in nature but we would like to know how they inter-
face with other points of view. In particular, if one thinks of the states in the state expansion of
the bracket polynomial as analogs of the states of a physicalsystem such as the Potts model in
statistical mechanics, then the loop configuration of a given state corresponds to a decomposition
of the underlying graph of the statistical mechanics model into regions of constant spin (where
spin designates the local variable in the model). Working with a boundary operator, as we did
with the Khovanov chain complex, means taking into account adjacency relations among these
types of physical states.

9 Discussion

The subject of Khovanov homology is part of the larger subject of categorification in general and
other link homologies in particular. The termcategorificationwas coined by Crane and Frenkel
in their paper [9] speculating on the possibility for invariants of four-manifolds via a categorical
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generalization of Hopf algebras where all structures are moved up one categorical level. Just such
a shift is seen in the Khovanov homology where loops that wereonce scalars become modules
and the original Jones polynomial is seen as a graded Euler characteristic of a homology theory.
There is now a complex literature on categorifications of quantum groups (aka Hopf algebras) and
relationships of this new form of representation theory with the construction of link homology.
For this we refer the reader to the following references [7, 8, 32, 33, 34, 43, 49, 50, 51]. It is
possible that the vision of Crane and Frenkel for the construction of invariants of four dimensional
manifolds will come true.

Other link homology theories are worth mentioning. In [35, 36, 37] Khovnaov and Rozan-
sky construct a link homology theory for specializations ofthe Homflypt polynomial. Their
theory extends integrally to a Khovanov homology theory forvirtual knots, but no calculations
are known at this writing. Khovanov homology does extend integrally to virtual knot theory as
shown by Manturov in [28]. The relationship of the Manturov construction to that of Khovanov
and Rozansky is not known at this time. In [27] Dye, Kauffman and Maturov show how to modify
mod-2 Khovanov homology to categorify the arrow polynomialfor virtual knots. This leads to
many new calculations and examples [29, 30]. In [38, 39] Ozsvath, Szabo, Sarkar and Thurston
construct combinatorial link homology based on Floer homology that categorifies the Alexander
polynomial. Their techniques are quite different from those explained here for Khovanov homol-
ogy. The combinatorial definition should be compared with that of Khovanov homology, but it
has a flavor that is different, probably due to the fact that itcategorifies a determinant that cal-
culates the Alexander polynomial. This Knot Floer Homologytheory is very powerful and can
detect the three-dimensional genus of a knot (the least genus of an orientable spanning surface
for the knot in three dimensional space). Caprau in [5] has a useful version of the tangle cobor-
dism approach to Khovanov homology and Clark, Morisson and Walker [6] have an oriented
tangle cobordism theory that is used to sort out the functoriality of Khovanov homology for knot
cobordisms. There is another significant variant of Khovanov homology termedodd Khovanov
homology[40]. Attempts to find other global interpretations of Khovanov homology have led to
very significant lines of research [7, 8, 43], and attempts tofind general constructions for link
homology corresponding to the quantum link invariants coming from quantum groups have led
to research such as that of Webster [50, 51] where we now have theories for such constructions
that use the categorifications of quantum groups for classical Lie algebras..

There have been three applications of Khovanov homology that are particularly worth men-
tioning. One, we have discussed in Section 6, is Rasmussen’suse of Khovanov homology [44] to
determine the slice genus of torus knots without using gaugetheory. Another is the proof by Kro-
nheimer and Mrowka [24] that Khovanov homology detects the unknot. The work of Kronheimer
and Mrowka interrelates Khovanov homology with their theory of knot instanton homology and
allows them to apply their gauge theoretic results to obtainthis striking result. A proof that Kho-
vanov homolgy detects the unknot by purely combinatorial topological means is unknown at this
writing. By the same token, it is still unknown whether the Jones polynomial detects classical
knots. Finally, we mention the work of Shumakovitch [42] where, by calculating Khovanov ho-
mology, he shows many examples of knots that are topologically slice but are not slice in the
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differentiable category. Here Khovanov homology circumvents a previous use of gauge theory.
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