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1 Introduction

This paper is an introduction to Khovanov homology. We s#atth a quick introduction to the
bracket polynomial, reformulating it and the Jones polyraso that the value of an unknotted
loop isq + ¢~ !. We then introduce enhanced states for the bracket state sdihats in terms
of these enhanced states the bracket is a sum of monomiaén iftSection 3, we point out
that the shape of the collection of bracket states for a givagram is a cube and that this cube
can be taken to be a category. It is an example otibe category We show that functors
from a cube category to a category of modules naturally hawedtogy theories associated with
them. In Section 4 we show how to make a homology theory (Khovdnomology) from the
states of the bracket so that the enhanced states are theitges®f the chain complex. We
show how a Frobenius algebra structure arises naturaliy ffos adjacency structure for the
enhanced states. Finally we show that the resulting homasogn example of homology related
to a module functor on the cube category as described ind®e8ti In Section 5, we give a
short exposition of Dror BarNatan’s tangle cobordism tlyefor Khovanov homology. This
theory replaces Khovanov homology by an abstract chain hapyalass of a complex of surface



cobordisms associated with the states of a knot or link diagrin Section 6 we give a short
exposition of the Rasmussen invariant and its applicatidimting the four-ball genus of torus
knots. In Section 7 we give a description of Khovanov homglagthe homology of a simplicial
module by following our description of the cube categoryhistcontext. | regard this section
as a step in the direction of providing an abstract simglic@motopy theory for Khovanov
homology, but this project is not yet completed. In SectiomeBdiscuss a quantum context for
Khovanov homology that is obtained by building a Hilbertspavhose orthonormal basis is the
set of enhanced states of a diagr&mThen there is a unitary transformatiéiy of this Hilbert
space so that the Jones polynomial is the trace ofUx : Jx = Trace(Uk). We discuss a
generalization where the linear space of the Khovanov hogyalself is taken to be the Hilbert
space. In this case we can define a unitary transformatjoso that, for values of andt on the
unit circle, the Poincaré polynomial for the Khovanov hdoyy is the trace ot/}.. Section 9 is
is a discussion of other forms of link homology and categmatfon with selected references.

It gives the author great pleasure to thank the members atratum Topology Seminar
at the University of Illinois at Chicago for many useful censations and to thank the Perimeter
Institute in Waterloo, Canada for their hospitality whitestpaper was being completed.

2 Bracket Polynomial and Jones Polynomial
The bracket polynomial [15] model for the Jones polynoni@l[13/ 14 5P] is usually described

by the expansion
(X) =A(X) +470)

Here the small diagrams indicate parts of otherwise idehtazger knot or link diagrams. The
two types of smoothing (local diagram with no crossing) iis flormula are said to be of typé
(A above) and typé3 (A~ above).

(O) = —A%— 472

(K O) = (~4* = A)(K)
(Y) = (-4 )
() = (-4 ()

One uses these equations to normalize the invariant and anadaelel of the Jones polynomial.
In the normalized version we define

fre(A) = (=A%) 7"U(K) [{O)

where the writhevr(K) is the sum of the oriented crossing signs for a choice of tatem of
the link K. Since we shall not use oriented links in this paper, we rdferreader to[[15] for
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the details about the writhe. One then has thatA) is invariant under the Reidemeister moves
(again se€ [15]) and the original Jones polynorialt) is given by the formula

Vi (t) = fr(t™%).

The Jones polynomial has been of great interest since tswisy in 1983 due to its relationships
with statistical mechanics, due to its ability to often detde difference between a knot and its
mirror image and due to the many open problems and relatipsisif this invariant with other
aspects of low dimensional topology.

The State Summation. In order to obtain a closed formula for the bracket, we nowcdbs it
as a state summation. L&t be any unoriented link diagram. Definestate S, of K to be the
collection of planar loops resulting from a choice of smaaghfor each crossing of. There
are two choices4 and B) for smoothing a given crossing, and thus there2ir&) states of a
diagram withc(K) crossings. In a state we label each smoothing wiitor A~! according to
the convention indicated by the expansion formula for trecket. These labels are thiertex
weightsof the state. There are two evaluations related to a state.fifdt is the product of the
vertex weights, denoted’|S). The second is the number of loops in the statelenoted|S]||.
Define thestate summatign i), by the formula

(K) =Y < K|S > ¢l
S

wherej = —A? — A~2. This is the state expansion of the bracket. It is possiblewwite this
expansion in other ways. For our purposes in this paper ibiroonvenient to think of the loop
evaluation as a sum afvo loop evaluations, one giving A% and one giving—A~2. This can
be accomplished by letting each state curve carry an exied td +1 or —1. We describe these
enhanced statdselow. But before we do this, it will be useful for the readeekamine Figure
2. In Figure 2 we show all the states for the right-handeabtir&hot, labelling the sites witkd
or B whereB denotes a smoothing that would receite! in the state expansion.

Note that in the state enumeration in Figure 2 we have orgdrilze states in tiers so that the
state that has onlyi-smoothings is at the top and the state that has éagmoothings is at the
bottom.

Changing Variables. Letting ¢(K) denote the number of crossings in the diagrBmif we
replace(K) by A~ (K) and then replacei®> by —¢~!, the bracket is then rewritten in the
following form:

(X0 =(X) =4q0Q)

with (O) = (¢ + ¢~'). Itis useful to use this form of the bracket state sum for tileef the
grading in the Khovanov homology (to be described below). Shell continue to refer to the
smoothings labeled (or A~! in the original bracket formulation) a8-smoothings
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Figure 1:Reidemeister Moves

We catalog here the resulting behaviour of this modified kebander the Reidemeister
moves.

(O)=q+q"
(KO) = (¢+q " )(K)
() =q"()
(C)=—=¢*(~)
(o) = —a(X)

It follows that if we define
T = (=1 g {K),

wheren_ denotes the number of negative crossing&iandn . denotes the number of positive
crossings ink, thenJg is invariant under all three Reidemeister moves. ThAuyss a version of
the Jones polynomial taking the valge- ¢—* on an unknotted circle.

Using Enhanced States. We now use the convention einhanced statewhere an enhanced
state has a label dfor —1 on each of its component loops. We then regard the value dbtie
q+ ¢~ ! as the sum of the value of a circle labeled with @he value is;) added to the value of a
circle labeled with an-1 (the value is;~!). We could have chosen the less neutral labels bf
and X so that

=+l =1

and

= -1 =1,

since an algebra involving andx naturally appears later in relation to Khovanov homology. |
does no harm to take this form of labeling from the beginnifge use of enhanced states for
formulating Khovanov homology was pointed out by Oleg Vind48].
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Consider the form of the expansion of this version of the keapolynonmial in enhanced
states. We have the formula as a sum over enhanced states

wherei(s) is the number oB3-type smoothings in and;j(s) = i(s) + A(s), with A(s) the number
of loops labeled minus the number of loops labeled in the enhanced state

One advantage of the expression of the bracket polynomaaénhanced states is that it is
now a sum of monomials. We shall make use of this propertyutjinout the rest of the paper.

3 Khovanov Homology and the Cube Category

We are going to make a chain complex from the states of thekbrgmlynomial so that the
homology of this chain complex is a knot invariant. One wagde how such a homology theory
arises is to step back and note that the collection of states fliagram/i’ forms a category in
the shape of a cube. A functor from such a category to a categfanodules gives rise to a
homology theory in a natural way, as we explain below.

Examine Figure 2 and Figure 3. In Figure 2 we show all the stethtiracket states for the
trefoil knot with arrows between them whenever the statbatutput of the arrow is obtained
from the state at the input of the arrow by a single smoothireygite of typeA to a site of type
B. The abstract structure of this collection of states is agmty with objects of the forpAB A)
where this symbol denotes one of the states in the stateasiagf Figure 2. In Figure 3 we
illustrate this cube category (the states are arrangeckifotim of a cube) by replacing the states
in Figure 2 by symbols XY Z) where each literal is either a# or a B. A typical generating
morphism in the3-cube category is

(ABA) —» (BBA).

We formalize this way of looking at the bracket states a®fedl. LetS(/') denote a category
associated with the states of the bracket for a diagkamhose objects are the states, with sites
labeledA and B as in Figure 2. A morphism in this category is an arrow fromedestvith a given
number ofA’s to a state with fewed'’s.

LetD" = { A, B}" be then-cube category whose objects arethgequences from the set, B}

and whose morphisms are arrows from sequences with graatdrars ofA’s to sequences with
fewer numbers ofd’s. ThusD" is equivalent to the poset category of subset$loR, - - -n}.

We make a functoR : D" — S(K) for a diagram/K with n crossings as follows. We map
sequences in the cube category to bracket states by chdodaigel the crossings of the diagram
K fromthe sef{1, 2, - - -n}, and letting this functor take abstra¢s andB’s in the cube category

to smoothings at those crossings of typer type B. Thus each sequence in the cube category
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is associated with a unique state/§fwhen K hasn crossings. By the same token, we define

a functorS : S(K) — D" by associating a sequence to each state and morphisms hetwee
sequences corresponding to the state smoothings. With toesentions, the two compositions

of these morphisms are the identity maps on their respecaitegjories.

Let M be a pointed category with finite sums, andfet D" — M be a functor. In our
caseM will be a category of modules anfi will carry n-sequences to certain tensor powers
corresponding to the standard bracket states of a knotlo{inWe postpone this construction
for a moment, and point out that there is a natural structtich@n complex associated with the
functor F. First note that each object il™ has the form

X =(Xg-X,_1)
where eachX; equals eithed or B and we have morphisms
di (Xo - Xi - Xpq) — <X0"‘Xi"'Xn—1>
wheneverX; = A and (by definition)X; = B. We then define
0, =C(d;) : C{Xp- - X; - Xp1) — C(Xp-- X; - Xp1)
whenevel; is defined. We then define the chain comgldxy
CF=@PC(Xo Xn1)
X

where each sequenéé = (X, --- X,,_1) hask B’s. With this we define
d:CF — CkHl
by the formula
Oz = Ty (—1)08;(x)
forx € CX = C(Xy---X,—1) andc(X, ) denotes the number of's in the sequenc& that
precedeX;.

We wantd? = 0 and it is easy to see that this is equivalent to the conditiand;d; = 9;0;
for i # 7 whenever these maps and compositions are defined. We caneaizat the functo#
has this property, or we can build it in axiomatically by adyglthe corresponding relations to the
cube category in the fornt;d; = d;d, for i # j whenever these maps are defined. In the next
section we shall see that there is a natural way to define tips mdhe state category so that this
condition holds. Once we axiomatize this commutation i@heat the level of the state category
or the cube category, then the func®will induce a chain complex and homology as above.

In this way, we see that a suitable functor from the cube cayelp a module category allows
us to define homology that is modeled on the “shape” of the clibe set of bracket states forms
a natural functorial image of the cube category, and thaemélpossible to define the Khovanov
chain complex. In terms of the bracket states, we will majh esiate loop to a specific module
V, and each state to a tensor powei/ofo the number of loops in the state. The details of this
construction are in the next section.



We use a specific construction for the Khovanov complex thalirectly related to the en-
hanced states for the bracket polynomial, as we will seeegmtxt section. In this construction
we will use the enhanced states, regarding each loop a®thiath eitherl or x for a module
V = k[z]/(2*) associated with the loop (whete= Z/2Z or k = Z.) Thus the two labelings
of the loop will corespond to the two generators of the modulé state that is a collection of
loops will be associated with"®” wherer is the number of loops in the state. In this way we
will obtain a functor from the state category to a module gatg, and at the same time it will
happen that any single enhanced state will correspond toexager of the chain complex. In the
next section we show how naturally this algebra appearslatioa to the enhanced states. We
then return to the categorical point of view and see howaseartobordisms of circles provide an
abstract category for the invariant.

4 Khovanov Homology

In this section, we describe Khovanov homology along thediof [31] 3], and we tell the story
so that the gradings and the structure of the differentiargmin a natural way. This approach to
motivating the Khovanov homology uses elements of Khovamnginal approach, Viro’s use of
enhanced states for the bracket polynomial [48], and BaatNsemphasis on tangle cobordisms
[2,[3]. We use similar considerations in our paper [27].

Two key motivating ideas are involved in finding the Khovanovariant. First of all, one
would like to categorifya link polynomial such agK’). There are many meanings to the term
categorify, but here the quest is to find a way to express tikepgolynomial as ayraded Euler
characteristic(/{') = x,(H(K)) for some homology theory associated witki).

We will use the bracket polynomial and its enhanced statelessribed in the previous sec-
tions of this paper. To see how the Khovanov grading arisassider the form of the expansion
of this version of the bracket polynomial in enhanced staté¢ess have the formula as a sum over
enhanced states:

wherei(s) is the number ofB-type smoothings i, A(s) is the number of loops in labeled
1 minus the number of loops labeled andj(s) = i(s) + A(s). This can be rewritten in the
following form:

(K) =>_(=1)'¢dim(C")

i\

where we defin€" to be the linear span (over the complex numbers for the perpbthis paper,
but over the integers or the integers modulo two for othetexdr) of the set of enhanced states
with i(s) = i andj(s) = j. Then the number of such states is the dimendion(C*).
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We would like to have a bigraded complex composed ofXhevith a differential

d:CY — C™,
The differential should increase themological grading by 1 and preserve thguantum grading
j. Then we could write

Zq Z dzm C” quC”

wherex(C*7) is the Euler charactenstlc of the subcomm}é)t for a fixed value ofj.

This formula would constitute a categorification of the letgolynomial. Below, we shall see
how the original Khovanov differentiad is uniquely determined by the restriction thiabs) =
j(s) for each enhanced state Since;j is preserved by the differential, these subcompléXés
have their own Euler characteristics and homology. We have

X(H(C*)) = x(C*)

whereH (C*7) denotes the homology of the complé¥%'. We can write
Zq X(H(C*7))

The last formula expresses the bracket polynomlalgiaaed Euler characteristiof a homology
theory associated with the enhanced states of the braeketsstmmation. This is the categorifi-
cation of the bracket polynomial. Khovanov proves that Humology theory is an invariant of
knots and links (via the Reidemeister moves of Figure 1)atang a new and stronger invariant
than the original Jones polynomial.

We will construct the differential in this complex first forad-2 coefficients. The differential
is based on regarding two statesaaacentif one differs from the other by a single smoothing
at some site. Thus ifs, 7) denotes a pair consisting in an enhanced statad siter of that
state withr of type A, then we consider all enhanced statesbtained froms by smoothing at
7 and relabeling only those loops that are affected by thewesimmg. Call this set of enhanced
statesS’[s, 7]. Then we shall define theartial differential 0, (s) as a sum over certain elements
in S’[s, 7], and the differential by the formula

= Y 0.(s)

with the sum over all typel sitesr in s. It then remains to see what are the possibilities¥dr)
so thatj(s) is preserved.

Note that ifs’ € S'[s, 7], theni(s') = i(s) + 1. Thus
J(s") = i(s) + A(s) = 1 +i(s) + A(s).
From this we conclude tha(s) = j(s') if and only if \(s") = A(s) — 1. Recall that
As)=[s:+]—[s:—]
where([s : +] is the number of loops im labeled+1, [s : —] is the number of loops labeled1
(same as labeled with) andj(s) = i(s) + A(s).
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Proposition. The partial differential®. (s) are uniquely determined by the condition that') =
j(s) for all s involved in the action of the partial differential on the @nleed state. This unique
form of the partial differential can be described by thedwaling structures of multiplication and
comultiplication on the algebr& = k[z]/(x?) wherek = Z/2Z for mod-2 coefficients, or
k = Z for integral coefficients.

1. The element is a multiplicative unit and:? = 0.
2. A1) =1®@z+z®1landA(x) =z ® .

These rules describe the local relabeling process for looastate. Multiplication corresponds
to the case where two loops merge to a single loop, while cypfichtion corresponds to the
case where one loop bifurcates into two loops.

Proof. Using the above description of the differential, suppose there are two loops atthat
merge in the smoothing. If both loops are labeled s then the local contribution ta(s) is 2.
Let s denote a smoothing if[s, 7]. In order for the local\ contribution to become, we see
that the merged loop must be labeledSimilarly if the two loops are labeleand X, then the
merged loop must be labeled so that the local contribution for goes from0 to —1. Finally, if
the two loops are labeled and.X, then there is no label available for a single loop that wilgi
—3, so we definé to be zero in this case. We can summarize the result by sayatgftere is a
multiplicative structuren such thatn(1,1) = 1, m(1,z) = m(z,1) = 2, m(z,z) = 0, and this
multiplication describes the structure of the partialeliéntial when two loops merge. Since this
is the multiplicative structure of the algebra= k[z]/(2?), we take this algebra as summarizing
the differential.

Now consider the case wheséas a single loop at the site Smoothing produces two loops.
If the single loop is labeled, then we must label each of the two loopsdbin order to make\
decrease by. If the single loop is labeled, then we can label the two loops byand1 in either
order. In this second case we take the partial differenfialto be the sum of these two labeled
states. This structure can be described by taking a coprstucture withA(z) = =z ® x and
A(l) = 1®x + 2 ® 1. We now have the algebfia = k[z]/(2?) with productm : V@V — V
and coproducth : V — V ® V, describing the differential completely. This completes th
proof. //

Partial differentials are defined on each enhanced statel a siter of type A in that state.
We consider states obtained from the given state by smapthim given siter. The result of
smoothingr is to produce a new statéwith one more site of typ& thans. Formings’ from s
we either amalgamate two loops to a single loop,atr we divide a loop at into two distinct
loops. In the case of amalgamation, the new statequires the label on the amalgamated circle
that is the product of the labels on the two circles that araitcestors is. This case of the
partial differential is described by the multiplicationtime algebra. If one circle becomes two
circles, then we apply the coproduct. Thus if the circlelelad X, then the resultant two circles
are each labeled corresponding ta\(z) = x ® z. If the orginal circle is labeled then we take
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the partial boundary to be a sum of two enhanced states vioigtdaandz in one case, and labels
x andl in the other case, on the respective circles. This corretpti\(1) = 1@z + 2z ® 1.
Modulo two, the boundary of an enhanced state is the sum abhates of typeA in the state, of
the partial boundaries at these sites. It is not hard toywdnectly that the square of the boundary
mapping is zero (this is the identity of mixed partials!) dhdt it behaves as advertised, keeping
Jj(s) constant. There is more to say about the nature of this agrt&in with respect to Frobenius
algebras and tangle cobordisms. In Figures 4,5 and 6 wérdbeshow the partial boundaries can
be conceptualized in terms of surface cobordisms. Figureodvs how the partial boundary
corresponds to a saddle point and illustrates the two cddesion and fission of circles. The
equality of mixed partials corresponds to topological galgnce of the corresponding surface
cobordisms, and to the relationships between Frobeniebedg/[23] and the surface cobordism
category. In particular, in Figure 6 we show how in a key cdsvo sites (labeled 1 and 2 in
that Figure) the two orders of partial boundary are

and
8182 = Aom.

In the Frobenius algebrid = k[z]/(x?) we have the identity
(le@m)o(A®1)=Aom.

Thus the Frobenius algebra implies the identity of the migadials. Furthermore, in Figure
5 we see that this identity corresponds to the topologicalvatence of cobordisms under an
exchange of saddle points.

In Figures 7 and 8 we show another aspect of this algebra. gwé&i7 illustrates, we can
consider cup (minimum) and cap (maximum) cobordisms thatefween the empty set and a
single circle. With the categorical arrow going down thegabe cap is a mapping from the base
ring k to the moduléd/ and we denote this mapping hy: £ — V. It is theunit for the algebra
V and is defined by)(1) = 1y, taking1 in k£ to 1 in V. The cup is a mapping frofil to k£ and
is denoted by : V' — k. This is thecounit As Figure 7 illustrates, we need a basic identity
about the counit which reads

Ye(ar)as = a

for anya € V where
Aa) = Ya; ® as.

The summation is over an appropriate set of elemenis<iry as in our specific formulas for the
algebrak|x]/(z?). Of course we also demand

Yaje(as) = a

for anya € V. With these formulas about the counit and unit in place, wetlsaecobordisms
will give equivalent algebra when one cancels a maximum otirannum with a saddle point,
again as shown in Figure 7.
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Note that for our algebr& = k[x]/(2?), it follows from the counit identies of the last para-
graph that
€(1)=0

and
e(z) = 1.

In fact, Figure 8 shows a formula that holds in this specigéhta. The formula reads
e(ab) = e(ax)e(b) + €(a)e(bx)

for anya,b € V. As the rest of Figure 8 shows, this identity means that a sitigbe in any
cobordism can be cut, replacing it by a cups and a caps inarlownbination of two terms. The
tube-cutting relation is shown in its most useful form at tleétom of Figure 8. In Figure 8, the
black dots are symbols standing for the special eleménthe algebra.

It is important to note that we have a nonsingular pairing
(|): VeV —k

defined by the equationn
(a|b) = e(ab).

One can define a Frobenius algebra by starting with the existef a non-singular bilinear pair-
ing. In fact, a finite dimensional associative algebra witit defined over a unital commutative
ring & is said to be &robenius algebraf it is equipped with a non-degenerate bilinear form

(|): VeV —k

such that
(ablc) = {albc)

for all a, b, c in the algebra. The other mappings and the interpretatidarms of cobordisms
can all be constructed from this definition. See [23].

Remark on Grading and Invariance. In Section 2 we showed how the bracket, using the
variableg, behaves under Reidemeister moves. These formulas conegsphow the invariance
of the homology works in relation to the moves. We have that

Jie = (1= (),

wheren_ denotes the number of negative crossinggirandn_ denotes the number of posi-
tive crossings ink. J(K) is invariant under all three Reidemeister moves. The cparding
formulas for Khonavov homology are as follows

T = (1) g () =

12
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Figure 4:SaddlePoints and State Smoothings

(—1)n7qn+—2nf Zi,j(—l)iajdim(Hi’j(K) _
Xy (1) gt 2 i (H () =
5, (= 1) dim(H= =342 (KY).

It is often more convenient to define tReincare polynomiafor Khovanov homology via
Px(t,q) = X t' ¢ dim(H'™"—I7 "+ 12— (K)).

The Poincaré polynomial is a two-variable polynomial im&at of knots and links, generalizing
the Jones polynomial. Each coefficient

dim(Hi—n,,j—nJF-i—Zn, (K))

is an invariant of the knot, invariant under all three Reide&ster moves. In fact, the homology
groups
Hz’—n,,j—n++2n, (K)

are knot invariants. The grading compensations show hovwgthading of the homology can
change from diagram to diagram for diagrams that reprekergame knot.

Remark on Integral Differentials. Choose an ordering for the crossings in the link diagfam
and denote them by, 2, - - - n. Let s be any enhanced state &f and letd;(s) denote the chain
obtained froms by applying a partial boundary at theh site ofs. If the i-th site is a smoothing
of type A1, thend,(s) = 0. If the i-th site is a smoothing of typd, thend;(s) is given by the
rules discussed above (with the same signs). The comgtdmhditions that we have discussed
show that partials commute in the sense th@i; (s)) = 0;(9;(s)) for all i and;. One then defines
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Figure 5:Surface Cobordisms

8261 = 1@®@m)@®1)
6162 = (8)(m)
0.0 :6261

Figure 6:Local Boundaries Commute
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L @ lﬂ Aa) = Zal(R) a2
£a) iy

counit unit

m(s(1)®x + e(x)®1) =1
g(1) =
s(x)) =
m(Zg(al) ®a2) =a
1
1
1IRX + X@1 J/
&(ly) =0 2X

g(2x)=2

Figure 7:Unit and Counit as Cobordisms
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g(ab) = g(ax)e(b) + g(a)e(bx)
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Figure 8:The Tube Cutting Relation
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signed boundary formulas in the usual way of algebraic tmgpplOne way to think of this regards
the complex as the analogue of a complex in de Rham cohomdledydz,, dzs, - - -, dx, } be

a formal basis for a Grassmann algebra so dhat\ dz; = —dz; A dx; Starting with enhanced
statess in C°(K) (that is, states with ali-type smoothings) define formally;(s) = 9;(s)dx;
and regardi;(s) as identical with);(s) as we have previously regarded it (K). In general,
given an enhanced statein C*(K) with B-smoothings at locationg < iy < -+ < i, We
represent this chain asiz;, A --- A dz;, and define

Isduy, A~ Ndxy) =Y 0j(s)dej Adayy A+ A day,,
=1

just as in a de Rham complex. The Grassmann algebra autathatiomputes the correct signs
in the chain complex, and this boundary formula gives thginal boundary formula when we
take coefficients modulo two. Note, that in this formalismartfal differentialso; of enhanced
states with aB-smoothing at the sitéare zero due to the fact thét; A dz; = 0 in the Grass-
mann algebra. There is more to discuss about the use of Gaagssatgebra in this context. For
example, this approach clarifies parts of the constructid@g].

It of interest to examine this analogy between the Khovamayhlomology and de Rham
cohomology. In that analogy the enhanced states corredpahé differentiable functions on a
manifold. The Khovanov complex*(K) is generated by elements of the fosntr;, A - - - Adx;,
where the enhanced statbasB-smoothings at exactly the sités- - - , i,. If we were to follow
the analogy with de Rham cohomology literally, we would defimew complex© R(K') where
DR*(K) is generated by elementsiz;, A --- A dz;, Wheres is anyenhanced state of the link
K. The partial boundaries are defined in the same way as befdrdaiglobal boundary formula
is just as we have written it above. This gives@wchain complex associated with the ik
Whether its homology contains new topological informatatout the linki will be the subject
of a subsequent paper.

In the case of de Rham cohomology, we can also look for colplpathitary transformations.
Let M be a differentiable manifold an@( /) denote the DeRham complex of over the com-
plex numbers. Then for a differential form of the typer)w in local coordinates, - - -, z,, and
w a wedge product of a subsetd@if; - - - dx,,, we have

n

d(fw)=> (0f /0x;)dw; A w.

i=1

Hered is the differential for the DeRham complex. Théf\/) has as basis the set [gf(x)w)
wherew = dz;, A --- Adx;, withi; < --- < 4. We could achievé/d + dU = 0if U is a
very simple unitary operator (e.g. multiplication by phatgat do not depend on the coordinates
x;) but in general it will be an interesting problem to deterenall unitary operator&’ with this

property.
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A further remark on de Rham cohomology. There is another relation with the de Rham com-
plex: In [41] it was observed that Khovanov homology is rethto Hochschild homology and
Hochschild homology is thought to be an algebraic versiodeoRham chain complex (cyclic
cohomology corresponds to de Rham cohomology), compatle [45

5 TheCube Category and the Tangle Cobor dism Structure of
K hovanov Homology

We can now connect the constructions of the last sectiontivéihomology construction via the
cube category. Here it will be convenient to think of theestzdtegoryS(K') as a cube category
with extra structure. Thus we will denote the bracket stagesequences ofi’s and B’s as

in Figures 2 and 3. And we shall regard the maps sucti,as (AABA) — (ABBA) as
corresponding to re-smoothings of bracket states thatmgitin or separate state loops. We take
V = k[z]/(x*) with the coproduct structure as given in the previous sactibhe maps from
m:VeV —VandA:V — V ®V allow us to define the images of the resmoothing maps
d; under a functotF : S(K') — M whereM is the category generated byby taking tensor
powers ofl” and direct sums of these tensor powers. It then follows tlmhbmology we have
described in the previous section is exactly the homologg@ated with this functor.

The material in the previous section also suggests a maiiliiicaf the state categoky(K).
Instead of taking the maps in this category to be simply thetrabt arrows generated by ele-
mentary re-smoothings of states frofnto B, we can regard each such smoothing as a surface
cobordism from the set of circles comprising the domairesiathe set of circles comprising the
codomain state. With this, in mind, two such cobordismsesent equivalent morphisms when-
ever the corresponding surfaces are homeomorphic retatieir boundaries. Call this category
CobS(K'). We then easily generalize the observations of the previeasos, particularly Fig-
ures 4, 5 and 6, to see that we have the desired commutingrsdid; = d;d; (for i # j) in
CobS(K) so that any functor fronBobS(K') to a module category will have a well-defined chain
complex and associated homology. This applies, in pagrdolthe functor we have constructed,
using the Frobenius algebta= k[x]/(z?).

In [3] BarNatan takes the approach using surface cobordsmsiep further by making a
categorical analog of the chain complex. For this purposéet@obS (K ) become an additive
category. Maps between specific objegtsandY added formally and the sét/aps(X,Y) is
a module over the integers. More generally,debe an additive category. In order to create
the analog of a chain complex, I8ttat(C') denote theMatrix Category ofC whose objects are
n-tuples (vectors) of objects ¢f (n can be any natural number) and whose morphisms are in the
form of a matrixm = (m,;) of morphisms inC' where we write

m:0 — O
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and
mij : Oz — O;

for
O: (Olv"'vOn)v

0 = (Oiva;r)

HereO; andO’; are objects irC while O and(O’ are objects inMat(C'). Composition of mor-
phisms inMat(C) follows the pattern of matrix multiplication. If

n:0 — 0"

then
nom:0 — 0"

and
(’n, o m)%] = ani,k’ e} ka'

where the compositions in the summation occur in the cayegor

We then define theategory of complexes ovétr denotedCom(Mat(C')) to consist of se-
quences of objects 0¥1at(C') and maps between them so that consecutively composed neaps ar
equal to zero.

s OF S OFT O

Here we let), : OF — O’**! denote the differential in the complex and we assmedhat);, =
0. A morphism between complexés and O’* consists in a family of mapg, : O* — O’
such thav, fr = fr+10k. Such morphisms will be callechain maps

At this abstract level, we cannot calculate homology sinemé&ls and cokernels are not
available, but we can define themotopy typef a complex inCom(Mat(C)). We say that two
chain mapsf : O — O’ andg : O — O’ arehomotopidf there is a sequence of mappings
Hy : OF — O*~! such that

f—g=HO+ 0H.

Specifically, this means that
fr — gr = Hp1 O + Op1 Hy.

Note that ifp = HO + 0H, then
0¢p = 0HO = ¢O0.

Thus any suchp is a chain map. We call two complex@sandO’ homotopy equivalernt there
are chainmaps$’' : O — O’ andG : O’ — O such that bothF'G andG F are homotopic to the
identity map ofO andO’ respectively. The homotopy type of a complex is an abstraustiute
for the homology since, in an abelian category (where onecoarpute homology) homology is
an invariant of homotopy type.
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We are now in a position to work with the categdtym (M at(CobS(K))) whereK is a link
diagram. The question is, what extra equivalence relatiothe categoryobS(K) will ensure
that the homotopy types iKom(Mat(CobS(K))) will be invariant under Reidemeister moves
on the diagranis.

BarNatan[[3] gives an elegant answer to this question. Hisvanis illustrated in Figure 9
where we show thdTu Relationthe Sphere Relatioand theTorus Relation The key relation
is the the4T'u relation, which serves a number of purposes, includinggaibasic homotopy
in the categoryCom(Mat(CobS(K))). Note that thelT'u relation can be described as follows:
There are four local bits of surface, call thefn Sy, S3, Ss. Let C; ; denote this configuration
with a tube connecting; and.S;. Then in the cobordism category we take the identity

Cia+C34=0C13+ Cou.

It is a good exercise for the reader to show that4fe relation follows from the tube cutting
relation of Figure 8. The Sphere and Torus relations adsatthe 2-sphere has value 0 and that
the torus has value 2, just as we have seen by using the Fustegebra in Figure 7.

To illustrate how things work once we factor by these relaijove show in Figures 10 and
11 how one sees the homotopy equivalance of the complexesdagram before and after the
second Reidemeister move. In Figure 10 we show the compbax@sndicate chain maps
andG between them and homotopies in the complex for the diagrdoréé is simplified by
the Reidemeister move. In Figure 11 we show these maps amdctimepositions in the form
of a four-term identity. The reader should first just look s tdentity of involving these four
cobordisms and recognize that it is exactly #¥eu relation. On the other hand, each of the
terms in the relation is factored into mappings invvolviiig GG; and the homotopie#/; and
H,; and the boundary mappings in the complex. Study of Figure illcaenvince the reader
that the complexes before and after the second Reidemasistex are homotopy equivalent. A
number of details are left to the reader. For example, n@&eithFigure 10 we have indicated
the categorical chain complexés and W by showing only how they differ locally near the
change corresponding to a Reidemeister two move. We giadsigures 10 and 11, chain maps
F: W — ZandG : Z — W. These maps consist in a particular cobordism on one part of
the complex and an identity map on the other part of the coxnée have specifically labeled
parts of these mappings By and byG,. Using the implicit definitions off; and G, given in
Figure 11, the reader will easily see tl@tF; = 0 since this composition includes2asphere.
From this it follows thatG' F' is the identity mapping on the complék. We also leave to the
reader to check that the mappingsand G commute with the boundary mappings so that they
are mappings of complexes. The part of the homotopy indicst®ws that’GG is homotopic
to the identity (up to sign) and so shows that the compléxesdil are homotopy equivalent.
One needs the value of the torus equal for homotopy invariance under the first Reidemeister
move. This is a fragment of the full derivation of homotopyi®glences corresponding to all
three Reidemeister moves that is given in the pager [3].
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Figure 10:Complexesfor Second Reidemeister Move
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6 Other FrobeniusAlgebrasand Rasmussen’s Theorem

Lee [25] makes another homological invariant of knots ankidiby using a different Frobenius
algebra. She takes the algebta= k[z]/(2? — 1) with

? =1,

Al)=1®z+r®1,
Alr)=z@r+1®1,
e(r) =1,
€(1)=0.

This gives a link homology theory that is distinct from Khoea homology. In this theory, the
guantum grading is not preseved, but we do have that

J(0()) = j(a)

for each chainx in the complex. This means thahe can useg to filter the chain complex for
the Lee homologyThe result is a spectral sequence that starts from Khovaomology and
converges to Lee homology.

Lee homology is simple. One has that the dimension of the bewotogy is equal t@«»(X)
wherecomp(L) denotes the number of components of the liInkUp to homotopy, Lee’s ho-
mology has a vanishing differential, and the complex bebawell under link concondance. In
his paper([4] Dror BarNatan remarks "In a beautiful artickenESoo Lee introduced a second
differential on the Khovanov complex of a knot (or link) arftbsved that the resulting (double)
complex has non-interesting homology. This is a very irgiing result.” Rasmusseh [44] uses
Lee’s result to define invariants of links that give lower hds for the four-ball genus, and deter-
mine it for torus knots. This gives an (elementary) proof abajecture of Milnor that had been
previously shown using gauge theory by Kronheimer and Me{2].

Rasmussen’s result uses the Lee spectral sequence. Wénbapeantumy) grading for a di-
agramK and the fact that for Lee’s algebf&)(s)) > j(s). Rasmussen uses a hormalized version
of this grading denoted hy(s). Then one makes afiltratiad*C* (K) = {v € C*(K)|g(v) > k}
and givern € Lee*(K) define

S(a) :=max{g(v)|[v] = a}
Smin(K) := min{S(a)|a € Lee*(K),a # 0}
Smaz(K) := max{S(a)|la € Lee*(K),a # 0}

and
S(K) = (1/2)(5mm(K) + Smax(K))'
This last average of,,,;, ands,,.. IS the Rasmussen invariant.
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We now enter the following sequence of facts:

1. s(K) € Z.

2. s(K) is additive under connected sum.

3. If K* denotes the mirror image of the diagrdmthen

s(K™) = —s(K).

4. If K is a positive knot diagram (all positive crossings), then
s(K)=—-r+n+1

wherer denotes the number of loops in the canonical oriented srimap(this is the same
as the number of Seifert circuits in the diagr&i andn denotes the number of crossings
in K.

5. For atorus knok, ;, of type(a, b), s(K,p) = (a — 1)(b—1).
6. |s(K)| < 2¢*(K) whereg*(K) is the least genus spanning surfacefoim the four ball.
7. g"(Kup) = (a—1)(b—1)/2. This is Milnor’s conjecture.

This completes a very skeletal sketch of the constructiohuse of Rasmussen’s invariant.

7 TheSimplicial Structure of Khovanov Homology

Let S denote the set of (standard) bracket states for a link diagfaOne way to describe the
Khovanov complex is to associate to each state ld@moduleV” isomorphic to the algebra
k[z]/(«?) with coproduct as we have described in the previous sectibhe generator$ and

x of this algebra can then be regarded as the two possible esim@mts of the loop. In the
same vein we associate to a statéhe tensor product of copies ©f, one copy for each loop
in the state. The local boundaries are defined exactly asdgediad the Khovanov complex is
the direct sum of the modules associated with the statesedirtk diagram. We will use this
point of view in the present section, and we shall describevéhov homology in terms of the
n-cube category and an associated simplicial object. Thpgser of this section is to move
towards, albeit in an abstract manner, a description of ldkhov homology as the homology of a
topological space whose homotopy type is an invariant oktiog of the underlying knot or link.
We do not accomplish this aim, but the constructions giveeihenay move toward that goal.
An intermediate possibility would be to replace the Khowahomology by an abstract space or
simplicial object whose generalized homotopy type was wariant of the knot or link.
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Let D" = {A, B}" be then-cube category whose objects are thsequences from the
set{A, B} and whose morphisms are arrows from sequences with greatebers ofA’s to
sequences with fewer numbers 4. ThusD" is equivalent to the poset category of subsets of
{1,2,---n}. Let M be a pointed category with finite sums, andfet D" — M be a functor.

In our caseM is a category of modules (as described above)&rdrriesn-sequences to certain
tensor powers corresponding to the standard bracket stiddshot or link/A'. We map sequences
to states by choosing to label the crossings of the diadtainom the sef{ 1,2, - - -n}, and letting
the functor take abstraet's andB’s in the cube category to smoothings at those crossingpef ty
A ortypeB. Thus each sequence in the cube category is associated wiitpeeistate of< when

K hasn crossings. Nevertheless, we shall describe the consiructore generally.

For the functotF we first construct a semisimplicial obje€tF') over M, where a semisim-
plicial object is a simplicial object without degeneraci€his means that it has partial boundaries
analogous to the partial boundaries that we have discussedebbut none of the degeneracy
maps that are common to simplicial theory (seé [46] Chaptefdr k > 0 we set

C(F), = @UEDQ}_(U)

whereD; denotes those sequences in the cube categorykiwitis. Note that we are indexing
dually to the upper indexing in the Khovanov homology sediof this paper where we counted
the number of3’s in the states.

We introduce face operators (partial boundaries in ouripusvterminology)
d;: C(F), — C(F),_,

for 0 < ¢ < kwith £ > 1 as follows: d; is trivial for i = 0 and otherwisel; acts onF(v) by
the mapF(v) — F(v') wherev' is the sequence resulting from replacing tith A by B. The
operatorsi; satisfy the usual face relations of simplicial theory:

didj — dj—ldi
fori < 7.

We now expand (F') to a simplicial objectS(F’) over M by applying freely degeneracies to
the F(v)’s. Thus
S(F)m = ®uvep hst=m Siy ** 5i, T (0)

wherem > i; > --- > ¢, > 0 and these degeneracy operators are applied freely moculstral
(axiomatic) relations among themselves and with the faeeaiprs. Thei$(F') has degeneracies
via formal application of degeneracy operators to these$oand has face operators extending
those ofC(F). Itis at this point we should remark that in our knot theoretostruction there is
only at this point an opportunity for formal extension of dagracy operators above the number
of crossings in the given knot or link diagram since to malkec#r degeneracies would involve
the creation of new diagrammatic sites. There may be a natonstruction of this sort and if
there is, such a construction could lead to a significant Hopyatheory for Khovanov homology.
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When the functotF : D" — M goes to an abelian categai, as in our knot theoretic
case, we can recover the homology groups via

H.NS(F) = H,C(F)

where NS(F is the normalized chain complex 6fF). This completes the abstract simplicial
description of this homology.

8 Quantum Comments

States of a quantum system are represented by unit vectar$lilbert space. Quantum pro-
cesses are unitary transformations applied to these staters. In an appropriate basis for the
Hllbert space, each basis vector represesents a possiatireenent. Ifi)) is a unit vector, then,
upon measurement, one of the basis vectors will appear watbability, the absolute square of
its coefficient in|y)). One can, in principle, find the trace of a given unitary transfation by
instantiating it in a certain quantum system and makingatggemeasurements on that system.
Such a scheme, in the abstract, is called a quantum algqgréahohin the concrete is called a
guantum computer. One well-known quantum algorithm foedwatning the trace of a unitary
matrix is called the “Hadamard Test” [47].

In [19] we consider the Jones polynomial and Khovanov hogylo a quantum context. In
this section we give a sketch of these ideas. Recall fromi@egtthat we have the following
formula for the Jones polynomial.

Jie = (<1 ().

Using the enhanced states formulation of Section 2, we fotillzert space?{ (K) with or-
thonormal basis the set of enhanced statels dfor the Hilbert space we denote a basis element
by |s) wheres is an enhanced state of the diagr&mNow usingq as in Section 2, leg be any
point on the unit circle in the complex plane. Defiiig : H(K) — H(K) by the formula

Ukls) = (_1)i(3)+"7q]'(8)+7L+—2n,|S>‘
ThenUyk defines a unitary transformation of the Hilbert space and ave that
Jx = Trace(Uk).

The Hadamard Test applied to this unitary transformatieerga quantum algorithm for the
Jones polynomial. This is not the most efficient quantum rdlgm for the Jones polynomial.
Unitary braid group representions can do befter[[20, R1B@{.this algorithm has the conceptual
advantage of being directly related to Khonavov homologydrticular, letC%’ be the subspace
of H(K) with basis the set of enhanced statgswith i(s) = i andj(s) = j. ThenH(K) is the
direct sum of these subspaces and we seeHliat) is identical with the Khovanov complex for
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K with coefficients in the complex numbers. Furthermoreirgtd : H(K) — H(K) be the
boundary mapping that we have defined for the Khovanov comple have

OoUkg +Ugo0=0.

ThusU induces a mapping on the Khovanov homology0fAs a linear space, the Khovanov
homology of K,
Homology(H(K)) = Kernel(0)/Image(0)

is also a Hilbert space on whichy acts and for which the trace yields the Jones polynomial.

If we are given more information about the Khovanov homolagya space, for example if
we are given a basis fa* -7 ~"+2"-(K) for each: andj, then we can extendl to act on
Hi—n—J—n+2n— () as an eigenspace with eigenvaliig whereq andt are chosen unit complex
numbers. Then we have an extendgdwith

Ukla) =t'¢’|o)

for eacha € Hi—"-J—n++2n-(K). With this extension we have that the traceldf recovers a
specialization of the Poincaré polynomial (Section 4)tfer Khovanov homology.

Trace(Uy) = S jt' ¢ dim(H'™"77"+ 2"~ (K)) = Pg(t, q).

Thus, in principle, we formulate a quantum algorithm for@pkzations of the Poincare polyno-
mial for Khovanov homolgy.

Placing Khovanov homology in an appropriate quantum mdchimuantum information
theoretic, or quantum field theory context is a fundament&stjon that has been considered
by a number of people, including Sergei Gukov![10, 11] and &dwVitten [52] 58] 54]. The
constructions discussed here are elementary in naturedwiould like to know how they inter-
face with other points of view. In particular, if one thinkkthe states in the state expansion of
the bracket polynomial as analogs of the states of a physyséém such as the Potts model in
statistical mechanics, then the loop configuration of argatate corresponds to a decomposition
of the underlying graph of the statistical mechanics moul&l regions of constant spin (where
spin designates the local variable in the model). Workinthwsi boundary operator, as we did
with the Khovanov chain complex, means taking into accodjaaency relations among these
types of physical states.

9 Discussion

The subject of Khovanov homology is part of the larger sulipécategorification in general and
other link homologies in particular. The terategorificatiorwas coined by Crane and Frenkel
in their paper[[9] speculating on the possibility for inaaris of four-manifolds via a categorical
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generalization of Hopf algebras where all structures areadoip one categorical level. Just such
a shift is seen in the Khovanov homology where loops that we scalars become modules
and the original Jones polynomial is seen as a graded Eueadieristic of a homology theory.
There is now a complex literature on categorifications ohduia groups (aka Hopf algebras) and
relationships of this new form of representation theoryhwvite construction of link homology.
For this we refer the reader to the following references [BR[33,34[ 43, 49, 50, 51]. Itis
possible that the vision of Crane and Frenkel for the constm of invariants of four dimensional
manifolds will come true.

Other link homology theories are worth mentioning. [In![86,[37] Khovnaov and Rozan-
sky construct a link homology theory for specializationstleé Homflypt polynomial. Their
theory extends integrally to a Khovanov homology theoryviotual knots, but no calculations
are known at this writing. Khovanov homology does extendgrdlly to virtual knot theory as
shown by Manturov in[[28]. The relationship of the Mantur@nstruction to that of Khovanov
and Rozansky is not known at this time. [In[[27] Dye, Kauffmad &aturov show how to modify
mod-2 Khovanov homology to categorify the arrow polynonfical virtual knots. This leads to
many new calculations and examples![29, 30].[1n [38, 39] @#s\Szabo, Sarkar and Thurston
construct combinatorial link homology based on Floer hargglthat categorifies the Alexander
polynomial. Their techniques are quite different from thegplained here for Khovanov homol-
ogy. The combinatorial definition should be compared witt tf Khovanov homology, but it
has a flavor that is different, probably due to the fact thaategorifies a determinant that cal-
culates the Alexander polynomial. This Knot Floer Homoladlggory is very powerful and can
detect the three-dimensional genus of a knot (the leastsgehan orientable spanning surface
for the knot in three dimensional space). Caprallin [5] haseduli version of the tangle cobor-
dism approach to Khovanov homology and Clark, Morisson aradk&/ [6] have an oriented
tangle cobordism theory that is used to sort out the furalityiof Khovanov homology for knot
cobordisms. There is another significant variant of Khovamamology termeadd Khovanov
homology[4Q]. Attempts to find other global interpretations of Khaea homology have led to
very significant lines of researchl [7,[8,/43], and attemptBnit general constructions for link
homology corresponding to the quantum link invariants eapfrom quantum groups have led
to research such as that of Webster [50, 51] where we now haegiés for such constructions
that use the categorifications of quantum groups for clakkie algebras..

There have been three applications of Khovanov homologyatteaparticularly worth men-
tioning. One, we have discussed in Section 6, is Rasmusses’sf Khovanov homology [44] to
determine the slice genus of torus knots without using gtlugery. Another is the proof by Kro-
nheimer and Mrowka [24] that Khovanov homology detects thieot. The work of Kronheimer
and Mrowka interrelates Khovanov homology with their theof knot instanton homology and
allows them to apply their gauge theoretic results to oltamstriking result. A proof that Kho-
vanov homolgy detects the unknot by purely combinatorijabtogical means is unknown at this
writing. By the same token, it is still unknown whether thaéds polynomial detects classical
knots. Finally, we mention the work of Shumakovitchl[42] weby calculating Khovanov ho-
mology, he shows many examples of knots that are topoldgishte but are not slice in the
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differentiable category. Here Khovanov homology circumtgea previous use of gauge theory.
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