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Introduction

The first documented attempt to construct the geometry theory in an axiomatic way was made,
as we know, by Euclid (III cent BC) in his Elements. And while the word ‘geometry’ literally
means ‘earth measuring’, Euclidean geometry doesn’t describe elliptic space, as more proper
for measuring of our planet. New axiomatic approach was revolutionary one, however the
axiomatic has limitations. Euclid study what can be constructed calculated or demonstrated
starting with compass and straightedge. It was sufficient for that time. However today, despite
the fact Euclidean geometry is studied in the school, many people, including geometriests,
can’t remember its axioms. Exception makes famous Euclid’s V-th postulate, which many of
us remember in the form: “At most one line can be drawn through any point not on a given
line parallel to the given line in a plane”. Euclid decided to formulate it so: “If a line segment
intersects two straight lines forming two interior angles on the same side that sum to less than
two right angles, then the two lines, if extended indefinitely, meet on that side on which the
angles sum to less than two right angles”.

For modern geometry Euclid’s axiomatic has several limitations:

• Euclid’s axiomatic theory covered the only geometry system and only two–dimensional
case. The axiomatic of Euclidian geometry used today was developed by David Hilbert
(1862 — 1943), has 20 axioms and covers two and three dimensions.

• The four–dimensional case uses much more axioms. Development of axiomatic for spaces
of further dimensions is non–trivial.

• Except hyperbolic geometry, construction of good axiomatic for other geometries is also
non–trivial. Usually, an axiomatic is constructed after the geometry is well studied with
aim of some model (for example, [3] describes the space–time axiomatic).

• Undefined notions in geometry (point, line, between) differ very much from undefined
notions in other mathematic disciplines (number, function, space). Undefined notions of
different geometries differ from each other.

• Mathematicians successful study Euclidean space of any dimension using analytic geom-
etry and forget Euclid’s axiomatic.

Euclid’s axiomatic played one important role. Its V-th postulate is so hard expressed and
creates so artificial feeling that urged mathematicians to create the hyperbolic geometry. Sad,
when Nikolai Lobachevsky (1792 — 1856) and János Bolyai (1802 — 1860) published their
results, the new geometry was slow in acceptance. Only after decades it was demonstrated
that hyperbolic geometry is interior geometry of surfaces with constant negative curvature.
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6 Introduction

After next several years some models of hyperbolic geometry were elaborated. Due to that
fact the new geometry became accessible.

Author of a model, Felix Klein (1849 — 1925) proposed “Erlangen Program” [2] — the
unified view over different geometries as complex of different transformation groups of space.
The invariants of these groups are figures of the geometries. In such way, Klein presented
9 two–dimensional spaces. However, 6 of them he considered practic unaplicable [1]. Till
now speaking about “non–euclidean geometry”, elliptic or hyperbolic geometry is primarily
understood. Obviously, in order to make all geometries to be taken seriously, an accessible
model is required. One of such model for two–dimensional case proposed [4] Isaak Moiseevich
Yaglom (1921 — 1988), using the notion of generalized complex number. Among more recent
results you can refer to [5, 6, 7].

In this work, supposed to your attention an uniform model of geometric spaces and based
on it general analytic geometry are described. Among its advantages there are its universality
and linearity, hence easyness to use. It isn’t limited to specific dimension.

The first chapter describes different types of distance and angular measure and their mod-
els. Different variants of axioms valid for different geometries are analyzed, as well as one
variant of them, depending on some parameter and universally valid. A analytic model de-
pending on some parameters is constructed. Lengths and angles are defined as parameters of
corresponding motions.

In the second chapter you can find triangle equations valid for all geometries. The chapter
describes generalized orthogonal matrix as general form of motion matrix. A vector approach
will be shown for description of points, lines and planes, and for linear calculus of lengths and
angles. At the end of chapter, the reader will find a linear way to calculate volumes.

The third chapter has more philosophical character then practical one. Your attention
will be set on proper terminology and several well known spaces will be described in terms of
constructed theory.

Uniform model of geometric spaces becomes the background of the GeomSpace project1.

1http://sourceforge.net/projects/geomspace/. The last version of this book can also be downloaded form
here.

http://sourceforge.net/projects/geomspace/


Chapter 1

Geometric Space Model Construction

1.1 Three Kinds of Plane Rotations. Rotation Charac-

teristic

Consider real plane R2. Consider three different transformations of R2: rotation R′(φ),
Galilean transformation R′′(φ) and Lorintz transformation R′′′(φ) defined by matrices:

R′(φ) =

(
cosφ − sinφ
sinφ cosφ

)
,

R′′(φ) =

(
1 0
φ 1

)
,

and

R′′′(φ) =

(
coshφ sinhφ
sinhφ coshφ

)
,

where φ ∈ R.
Transformations R′(φ), R′′(φ) and R′′′(φ) have several common properties. The determi-

nant of all their matrices is 1, all them have the only fixed point — origin O = (0, 0), R(0) = I
— unit matrix, R(x)R(y) = R(x + y) = R(y)R(x) and the trajectory of point P = (1, 0)
verifies equations:

x20 + x21 = 1, for R′,

x0 = 1, for R′′,

x20 − x21 = 1, for R′′′.

More general, the trajectory equation can be written as (Figure 1.1):

x20 + k x21 = 1, k = −1, 0, 1.

We will name R′ elliptic rotation, R′′ parabolic rotation, R′′′ hyperbolic rotation and φ
respective angle. We will name the coefficient k characteristic of a rotation. k = 1 corresponds
to elliptic, k = 0 to parabolic and k = −1 to hyperbolic rotation.
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8 CHAPTER 1. GEOMETRIC SPACE MODEL CONSTRUCTION

O X 1

X 0

P

Figure 1.1: Trajectory of point P on transformations R′, R′′ and R′′′.

1.2 Functions C(x), S(x) and T (x)

We can see, that the matrices R′, R′′ and R′′′ have elements r11 = r22 and r12 = −k r21. We
can write:

R(φ) =

(
C(φ) −kS(φ)
S(φ) C(φ)

)
, (1.1)

where

C(x) =


cosx, k = 1

1, k = 0

coshx, k = −1

and

S(x) =


sinx, k = 1

x, k = 0

sinhx, k = −1

Finally, we can define formally the functions C(x) and S(x) as1:

C(x) = C(x, k) =
∞∑
n=0

(−k)n
x2n

(2n)!
, (1.2)

S(x) = S(x, k) =
∞∑
n=0

(−k)n
x2n+1

(2n+ 1)!
. (1.3)

We will introduce one more function:

T (x) =
S(x)

C(x)
. (1.4)

Note, that always has place the equality:

1Here and further we will consider for simplicity that k0 = 1 for k = 0 too. We will say x divide ki, k = 0
if in expression x/ki the exponent of k in numerator is not less then i.



1.3. REPRESENTATION OF TRANSLATION AS ROTATION. ITS CHARACTERISTICS9

C2(x) + kS2(x) = 1, ∀x ∈ R. (1.5)

We will name transformation (1.1) generalized rotation. Note, that along the angle it has
one more parameter — its characteristic.

1.3 Representation of Translation as Rotation. Its Char-

acteristics

Generalized rotation has a fixed point. However, the translation usually doesn’t have a fixed
point2. We will define the translation through generalized rotation using an extra-dimension,
as it is done in projective geometry.

For n-dimensional space consider vector space Rn+1. Rotation matrices have two different
rows compared to unit matrix. When one of them is the first row, we will consider them
translations. When none of them is the first one, we will consider them rotations. Therefore,
the first coordinate (we will count it 0) will be additional.

Let n = 1. We will name the vector o = {1, 0} origin. If a = R(φ)o, then the angle
φ between o and a we can name distance oa. Different values of k correspond to different
translations: when k = 1 translations are elliptic, when k = 0 they are parabolic, and when
k = −1 they are hyperbolic.

There is a kind of distance measure for each kind of translation: elliptic, parabolic and
hyperbolic. The difference between them can be seen in variants of V postulate of Euclid for
elliptic, linear and hyperbolic geometry (Figure 1.2).

l

p
pi

pii

P

a)

l

p

pi
pii

piii

P

b)

l

pipii

p
000

P

c)

Figure 1.2: Variants of Euclid’s V postulate — elliptic a), linear b) and hyperbolic c).

Elliptic postulate (Figure 1.2 a) is3: For a given line l and a point P /∈ l, exists no line
p 3 P | l∩ p = ∅. It is identical to the following: For a given line l and a point P /∈ l, all lines
p 3 P intersect l.

The linear postulate (Figure 1.2 b) is: For a given line l and a point P /∈ l, exists one line
p 3 P | l ∩ p = ∅.

The hyperbolic postulate (Figure 1.2 c) is: For a given line l and a point P /∈ l, exist at
least two lines p′, p′′ 3 P | l ∩ p′ = ∅, l ∩ p′′ = ∅.

2A fixed point is present for example in translation on elliptic plane.
3For this case it is necessary to modify another two postulates, namely that from any three points on a line

exactly one lies between two others, and that any line can be extended infinitely in any direction.



10 CHAPTER 1. GEOMETRIC SPACE MODEL CONSTRUCTION

Generally, V postulate of Euclid can be formulated as: For a given line l and a point P /∈ l,
exist 0k1 lines p 3 P | l ∩ p = ∅. It should be mentioned that 0k1 is a symbol, not a number
used in calculus. Its value equals to 0 for k1 = 1, 1 for k1 = 0 and ∞ for k1 = −1.

1.4 Kinds of Space Rotations. Bundles of Unconnectable

Points

It’s easy to see that classic rotations in Euclidean geometry, as well as in the elliptic (Rie-
mannian) geometry and the hyperbolic (Bolyai–Lobachevsky) geometry has the characteristic
k = 1. We can extend the notion of space rotation to generalized space rotation with some
characteristic. The best way to illustrate difference between them is to formulate angular
equivalent of V Postulate of Euclid — axiom of points connectability (Figure 1.3). In order
to do this we will change the following phrases between them:

line l ←→ point L,

P ∈ l ←→ p 3 L,
P /∈ l ←→ p 63 L,

AB = φ ←→ ∠ab = φ,

a ∩ b = C ←→ c = AB,

a ∩ b = ∅ ←→ A is unconnectable with B.

The last statement is unusual for the above three geometries4. It makes sense in geometries
with angular characteristic 0 or −1. The unconnectable property of points is similar to parallel
property of lines.

P

L Li Lii

l

a)
P

Li LiiL
l

b)
P

Li LiiLiv LiiiLv L

l

c)

Figure 1.3: Different variants of points unconnectability axiom — elliptic a), linear b) and
hyperbolic c).

The angle equivalent of V Postulate for elliptic characteristic (Figure 1.3 a) is: On a line
l 63 P exist no points L unconnectable with P .

For parabolic characteristic (Figure 1.3 b) it is: On a line l 63 P exists the only point L
unconnectable with P .

For the hyperbolic characteristic (Figure 1.3) it is: On a line l 63 P exist at least two points
L′ and L′′ unconnectable with P .

4It conflicts with axiom which states that through any two points goes a line. This axiom should be changed
by one of the following in order to consider the geometries with non-elliptic rotations.



1.4. KINDS OF SPACE ROTATIONS. BUNDLES OF UNCONNECTABLE POINTS 11

Generally this axiom can be formulated as: On a line l 63 P exist 0k2 points L unconnectable
with P . As in case of parallel lines, symbol 0k2 isn’t used in calculus.

Similar to bundles of lines — intersected, parallel or divergent we can speak about bundles
of points. More exactly, let X, Y ∈ Rn+1. All linear combinations Z = αX+βY, α, β ∈ R form
a set we will name bundle of points. As we will see, this set has one constraint. Therefore,
it has one free parameter. As every two lines define a bundle of lines, every two points (X
and Y ) define bundle of points. If X is connectable with Y this bundle is a line (similar to
intersection point of bundle of intersected lines). Lines has blue color on figure 1.3. If X
and Y are unconnectable, this bundle of points isn’t a line (similar to bundle of parallel or
divergent lines). Bundles of unconnectable points are green and red on figure 1.3.

For any angle characteristic there are infinity of bundles of connectable points. For angle
characteristic 1 all point bundles are lines. For angle characteristic 0 for any point there is
the only bundle of unconnectable points (green). For angle characteristic −1 there are infinity
bundles of unconnectable points (red). In thes case the bundles of connectable points and
the bundles of unconnectable points for some point form two categories of bundles. The limit
(marginal) bundles of unconnectable points (green) can be viewed as the third category (similar
to differencee between parallel and divergent lines). There are exactly two limit bundles. Note
that bundles of connectable points intersect all circles with centre in the centre of bundle, all
bundles of unconnectable points don’t intersect these circles and limit bundles are asymptotic
to circles (Figure 1.4).
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c)

Figure 1.4: Mutual position of different bundles and circles a) elliptic angular characteristic,
b) linear angular characteristic and c) hyperbolic angular characteristic.

Emphasize that the angle between two lines and the angle between two two–dimensional
planes are the different measures. The angle between two threedimensional planes is different
from them both and so on. Thus, the angle between lines can have the different characteristic
then the angle between two–dimensional planes and so on.
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1.5 Main Space Rotations

Consider Rn+1 and k1, k2, ...kn ∈ {−1, 0, 1}. We will note Ci(x) = C(x, ki), Si(x) = S(x, ki)
and Ti(x) = Si(x)/Ci(x). Let

R1(φ) =


C1(φ) −k1S1(φ) 0 . . . 0
S1(φ) C1(φ) 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 ,

R2(φ) =


1 0 0 . . . 0
0 C2(φ) −k2S2(φ) . . . 0
0 S2(φ) C2(φ) . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 ,

...

Rn(φ) =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . Cn(φ) −knSn(φ)
0 0 . . . Sn(φ) Cn(φ)

 .

We will name R1, ...Rn main space rotations.

1.6 Vector Product. Invariant Quadric Form

Let

Km =
m∏
i=1

ki, ∀m = 0, n (1.6)

We can see that Km ∈ {−1, 0, 1}, ∀m = 0, n as well as km. Let define vector product � as

x� y =
n∑
i=0

Kixiyi (1.7)

For some vectors x = {x0, x1, ...xn} and y = {y0, y1, ...yn}, x′ = Rm(φ)x = {x0, ...xm−2, xm−1
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Cm(φ)− kmxmSm(φ), xm−1Sm(φ) + xmCm(φ), xm+1, ...xn} and y′ = Rm(φ)y. We can see that

x′ � y′ =
n∑
i=0

Kix
′
iy
′
i

=
m−2∑
i=0

Kixiyi

+ ((xm−1Cm(φ)− kmxmSm(φ))(ym−1Cm(φ)− kmymSm(φ))

+ km(xm−1Sm(φ) + xmCm(φ))(ym−1Sm(φ) + ymCm(φ)))Km−1

+
n∑

i=m+1

Kixiyi

=
m−2∑
i=0

Kixiyi

+ ((xm−1ym−1C
2
m(φ)− km(xm−1ym + xmym−1)Sm(φ)Cm(φ) + k2mxmymS

2
m(φ)

+ kmxm−1ym−1S
2
m(φ) + km(xm−1ym + xmym−1)Sm(φ)Cm(φ) + kmxmymC

2
m(φ)))Km−1

+
n∑

i=m+1

Kixiyi

=
m−2∑
i=0

Kixiyi

+ (xm−1ym−1(C
2
m(φ) + kmS

2
m(φ)) + kmxmym(C2

m(φ) + kmS
2
m(φ)))Km−1

+
n∑

i=m+1

xiyiKi

=
n∑
i=0

Kixiyi = x� y

This is true for all m = 1, n. So the quadric form x�y is invariant in respect to main rotations
of Rm.

1.7 Space Definition by its Specification

Consider RPn projective space and ki ∈ {−1, 0, 1}, ∀i = 1, n. We can now introduce a
geometric space ‘unit sphere’ Bn = {x ∈ RPn |x� x = 1} (Figure 1.5). As all main rotations
preserves the quadric form defined by product �, they also preserves Bn. We will name
ki, i = 1, n space specification. We will name ‘point’ X ∈ Bn the corresponding vector x ∈ RPn
and will use homogeneous coordinates normalized in order to x� x = 1.

We will name ‘origin’ of Bn the point O = [1 : 0 : ... : 0] ∈ Bn. It isn’t origin of Rn+1,
(0, 0, ...0) /∈ Bn and we will refer to O as origin if isn’t specified otherwise.

It’s easy to see that for any k1, k2, ...kn, O = B0 ⊂ B1 ⊂ ... ⊂ Bn.
We will define motions of Bn all transformations that result on finite product of main

rotations.
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X 1

X 0

X 2
B 2

B 1

Figure 1.5: Sphere of space with specification {−1,−1}.

We will define ‘lines’ all images of B1 on any motion of Bn. Similarly, we define ‘m-
dimensional’ planes all images of Bm on any motions of Bn for any m ∈ 0, n− 1.

For each characteristic parameter ki we can introduce a scale parameter ri ∈ R+, i = 1, n.
The k1/r

2
1 is exactly the gaussian curvature of space. Others have no representation since

finite angle measure doesn’t require scaling. In this case the radian measure is native. An
example of angle scale is degree measure which has scale 180/π. However when the angle is
not bounded a scale introduction has sense. All scales can be easy embedded in functions

Ci(x), Si(x) and Ti(x) by using instead Ci

(
x
ri

)
, Si

(
x
ri

)
and Ti

(
x
ri

)
respectively, i = 1, n.

1.8 Definition of Measure Using Motions

A traditional way of definition the measures and motions is to provide a way to calculate the
distances as is and then to define motions in such way that all maps M : Rn → Rn preserve
the distance. We go another way. We provide motions as is and then search for a way to
define measures in such way that motions preserve them.

We will say point A ∈ B1 ⊂ Bn has the distance φ from origin O if A = R1(φ)O. Having
O = [1 : 0 : ... : 0], A = [C1(φ) : S1(φ) : 0 : ... : 0], O�A = C1(φ). We will say one–dimensional
(planar) angle between B1 and some one–dimensional line B′1 ⊂ B2 equals φ if B′1 = R2(φ)B1.
Similarly, we will define the m-dimensional angle φ between Bm and m-dimensional plane
B′m ⊂ Bm+1 if B′m = Rm+1(φ)Bm, ∀m = 0,m− 1. Note, that n-dimensional angle between
any planes is 0 since all them are subset of Bn.
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Let X, Y ∈ Bn. If there exists a motion that maps B1 to XY we will name points X and Y
connectable and distance XY measurable. If not, we will name points X and Y unconnectable
(just as lines can be parallel) and strictly speaking the distance XY doesn’t exists5.

We can find a motion M of space Bn that maps origin O to X and some point A ∈ B1 ⊂ Bn
to Y . As motion M preserves the quadric form �, we can see that X � Y = O � A. We can
define the distance φ between X and Y as

C1(φ) = X � Y. (1.8)

It’s easy to see that all motions preserve the distance. In case of elliptic, Euclidian and
hyperbolic space it is sufficient, because all other measures can be calculated from distances.
However, in some spaces angles can be scaled in a manner distances are scaled in Euclidean
space. So we should find the way to measure all the measures in general case.

5In this case there exist a measure XY , but it may have different characteristic then distance. We will
name this measure also distance, keeping in mind that it is generalized distance.
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Chapter 2

Measure Calculus

2.1 General Triangle Equations

Consider triangle ABC ∈ B2 with the edges a, b, c, interior angles α, γ and exterior angle
β′ (Figure 2.1). Let A = [1 : 0 : 0] the origin, C = R1(b)A = [C1(b) : S1(b) : 0] and B =
R2(α)R1(c)A = [C1(c) : S1(c)C2(α) : S1(c)S2(α)]. Note, that the interior angle β does not
exist in case of k2 = 0 or k2 = −1. The exterior angle β′ always exists.

A

B

CA i

B i

C i

A ii B ii

C ii

Figure 2.1: General triangle equations deduction.

Now, let A′B′C ′ = R(−b)(ABC) (Figure 2.1, cyan). The point we are interested in is
B′ = [C1(b)C1(c) + k1S1(b)S1(c)C2(α) : −S1(b)C1(c) + C1(b)S1(c)C2(α) : S1(c)S2(α)]. At the
other hand, now B′ = [C1(a) : −S1(a)C2(γ) : S1(a)S2(γ)]. It means:

C1(a) = C1(b)C1(c) + k1S1(b)S1(c)C2(α),

−S1(a)C2(γ) = −S1(b)C1(c) + C1(b)S1(c)C2(α),

S1(a)S2(γ) = S1(c)S2(α).

The first equation is the form of the Cosine I law. Similarly we have

C1(c) = C1(a)C1(b) + k1S1(a)S1(b)C2(γ).

17



18 CHAPTER 2. MEASURE CALCULUS

The third equation is equivalent to

S1(a)

S2(α)
=
S1(c)

S2(γ)
,

which is the form of the Sine law.

Let now A′′B′′C ′′ = R1(−c)R2(−α)(ABC) (Figure 2.1, brown). Now we are interested in
vertex C ′′ = [C1(b)C1(c) + k1S1(b)S1(c)C2(α) : −C1(b)S1(c) + S1(b)C1(c)C2(α) : −S1(b)S2(α)].
At the other hand, C ′′ = [C1(a) : S1(a)C2(β

′) : −S1(a)S2(β
′)]. From here we have:

C1(a) = C1(b)C1(c) + k1S1(b)S1(c)C2(α),

S1(a)C2(β
′) = −C1(b)S1(c) + S1(b)C1(c)C2(α),

−S1(a)S2(β
′) = −S1(b)S2(α).

The first one is the Cosine I law, the third one is equivalent to:

S1(a)

S2(α)
=

S1(b)

S2(β′)
=
S1(c)

S2(γ)
(2.1)

which is the Sine law. Note that in case k2 = 1 we have β = π − β′, S2(β) = S2(β
′). Let

calculate the value of C2(α) from the first equation and put it to the second one:

S1(a)C2(β
′) = −C1(b)S1(c) + S1(b)C1(c)

C1(a)− C1(b)C1(c)

k1S1(b)S1(c)

= −C1(b)S1(c) + C1(c)
C1(a)− C1(b)C1(c)

k1S1(c)
,

k1S1(a)S1(c)C2(β
′) = −k1S1(c)

2C1(b) + C1(a)C1(c)− C1(b)C1(c)
2

= C1(a)C1(c)− C1(b)(C1(c)
2 + k1S1(c)

2)

= C1(a)C1(c)− C1(b),

C1(b) = C1(a)C1(c)− k1S1(a)S1(c)C2(β
′).

Note the ‘−’ sign in the right part of the equation. It is so because the β′ angle is external.
For the case k2 = 1, the internal angle β = π − β′, C2(β) = −C2(β

′).

What about the Cosine II law? We will use these two equations:

−S1(a)C2(γ) = −S1(b)C1(c) + C1(b)S1(c)C2(α),

S1(a)C2(β
′) = −C1(b)S1(c) + S1(b)C1(c)C2(α)

First, replace S1(b) with S1(a)S2(β
′)/S2(α) and S1(c) with S1(a)S2(γ)/S2(α):

−S1(a)C2(γ) = −S1(a)
S2(β)

S2(α)
C1(c) + C1(b)S1(a)

S2(γ)

S2(α)
C2(α),

−S2(α)C2(γ) = −C1(c)S2(β
′) + C1(b)S2(γ)C2(α),

S2(β
′)C1(c) = S2(α)C2(γ) + C2(α)S2(γ)C1(b),
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and

S1(a)C2(β
′) = −C1(b)S1(a)

S2(γ)

S2(α)
+ S1(a)

S2(β
′)

S2(α)
C1(c)C2(α),

S2(α)C2(β
′) = −C1(b)S2(γ) + C1(c)S2(β

′)C2(α),

S2(γ)C1(b) = −S2(α)C2(β
′) + C2(α)S2(β

′)C1(c).

Now from the first equation let calculate C1(c) and put it in the second one:

S2(γ)C1(b) = −S2(α)C2(β
′) + C2(α)S2(β

′)
S2(α)C2(γ) + C2(α)S2(γ)C1(b)

S2(β′)

= −S2(α)C2(β
′) + C2(α)S2(α)C2(γ) + C2(α)2S2(γ)C1(b),

S2(γ)C1(b)(1− C2(α)2) = S2(α)(C2(α)C2(γ)− C2(β
′)),

k2S2(γ)C1(b)S2(α)2 = S2(α)(C2(α)C2(γ)− C2(β)),

k2S2(α)S2(γ)C1(b) = C2(α)C2(γ)− C2(β
′),

C2(β
′) = C2(α)C2(γ)− k2S2(α)S2(γ)C1(b).

When k2 = 1 we have

− cos β = cosα cos γ − k2 sinα sin γC1(b),

cos β = − cosα cos γ + k2 sinα sin γC1(b).

Similarly, calculating C1(b) form the second equation and putting it in the first one, obtain:

S2(β
′)C1(c) = S2(α)C2(γ) + C2(α)S2(γ)

C2(α)S2(β
′)C1(c)− S2(α)C2(β

′)

S2(γ)

= S2(α)C2(γ) + C2(α)2S2(β
′)C1(c)− C2(α)S2(α)C2(β

′),

S2(β
′)C1(c)(1− C2(α)2) = S2(α)(C2(γ)− C2(α)C2(β

′)),

k2S2(β
′)C1(c)S2(α)2 = S2(α)(C2(γ)− C2(α)C2(β

′)),

k2S2(α)S2(β
′)C1(c) = C2(γ)− C2(α)C2(β

′),

C2(γ) = C2(α)C2(β
′) + k2S2(α)S2(β

′)C1(c).

When k2 = 1 we have as above

cos γ = − cosα cos β + k2 sinα sin βC1(c).

Similarly, we have
C2(α) = C2(β

′)C2(γ) + k2S2(β
′)S2(γ)C1(a).

We will find the form of the Cosine I and II law that does not contain C1 or C2 functions
in the left part. However, it contains these functions in the right part. It makes sense since
in the case k1 6= 0 (for the Cosine I law) and k2 6= 0 (for the Cosine II law) when we can
calculate their respective C−1 functions, but when k1 = 0, the space admit distance scaling and
the angle values does not determine the distances (Cosine II law is a equality which doesn’t
contain C1 function), while when k2 = 0, the space admit the angular scaling and distances
does not determine angles (Cosine I law is a equality which doesn’t contain C2 function).
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Note also that we can deduce one form of Cosine I and one form of Cosine II law if we
introduce a (may be virtual) angle β so as:

S2(β) = S2(β
′),

C2(β) = −C2(β
′),

T2(β) = −T2(β′).

Then both Cosine I and II law have identical form. Now let calculate

k1S
2
1(a) = 1− C2

1(a)

= (C2
1(b) + k1S

2
1(b))(C2

1(c) + k1S
2
1(c))

− (C1(b)C1(c) + k1S1(b)S1(c)C2(α))2

= C2
1(b)C2

1(c) + k1C
2
1(b)S2

1(c) + k1S
2
1(b)C2

1(c) + k21S
2
1(b)S2

1(c)

− C1
1(b)C2

1(c)− 2k1C1(b)C1(c)S1(b)S1(c)C2(α)− k21S2
1(b)S2

1(c)C2
2(α)

= k1(C
2
1(b)S2

1(c) + S2
1(b)C2

1(c)− 2C1(b)C1(c)S1(b)S1(c)C2(α))

+ k21S
2
1(b)S2

1(c)(1− C2
2(α))

= k1(C
2
1(b)S2

1(c) + S2
1(b)C2

1(c)− 2C1(b)C1(c)S1(b)S1(c)C2(α))

+ k21k2S
2
1(b)S2

1(c)S2
2(α),

S2
1(a) = C2

1(b)S2
1(c) + S2

1(b)C2
1(c)− 2C1(b)C1(c)S1(b)S1(c)C2(α)

+ k1k2S
2
1(b)S2

1(c)S2
2(α),

or, having:

C1(a) = C1(b)C1(c)(1 + k1T1(b)T1(c)C2(α)),

T 2
1 (a) =

T 2
1 (b) + T 2

1 (c)− 2T1(b)T1(c)C2(α) + k1k2T
2
1 (b)T 2

1 (c)S2
1(α)

(1 + k1T1(b)T1(c)C2(α))2
. (2.2)

Similarly,

S2
1(b) = C2

1(a)S2
1(c) + S2

1(a)C2
1(c) + 2C1(a)C1(c)S1(a)S1(c)C2(β

′)

+ k1k2S
2
1(a)S2

1(c)S2
2(β′),

T 2
1 (b) =

T 2
1 (a) + T 2

1 (c) + 2T1(a)T1(c)C2(β
′) + k1k2T

2
1 (a)T 2

1 (c)S2
1(β′)

(1− k1T1(a)T1(c)C2(β′))2
, (2.3)

and

S2
1(c) = C2

1(a)S2
1(b) + S2

1(a)C2
1(b)− 2C1(a)C1(b)S1(a)S1(b)C2(γ)

+ k1k2S
2
1(a)S2

1(b)S2
2(γ),

T 2
1 (c) =

T 2
1 (a) + T 2

1 (b)− 2T1(a)T1(b)C2(γ) + k1k2T
2
1 (a)T 2

1 (b)S2
1(γ)

(1 + k1T1(a)T1(b)C2(γ))2
. (2.4)
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Now, let calculate

k2S
2
2(α) = 1− C2

2(α)

= (C2
2(β′) + k2S

2
2(β′))(C2

2(γ) + k2S
2
2(γ))

− (C2(β
′)C2(γ) + k2S2(β

′)S2(γ)C1(a))2

= C2
2(β′)C2

2(γ) + k2C
2
2(β′)S2

2(γ) + k2S
2
2(β′)C2

2(γ) + k22S
2
2(β′)S2

2(γ)

− C2
2(β′)C2

2(γ)− 2k2C2(β
′)S2(β

′)C2(γ)S2(γ)C1(a)− k22S2
2(β′)S2

2(γ)C2
1(a)

= k2(C
2
2(β′)S2

2(γ) + S2
2(β′)C2

2(γ)− 2C2(β
′)S2(β

′)C2(γ)S2(γ)C1(a))

+ k22S
2
2(β′)S2

2(γ)(1− C2
1(a))

= k2(C
2
2(β′)S2

2(γ) + S2
2(β′)C2

2(γ)− 2C2(β
′)S2(β

′)C2(γ)S2(γ)C1(a))

+ k1k
2
2S

2
2(β′)S2

2(γ)S2
1(a),

S2
2(α) = C2

2(β′)S2
2(γ) + S2

2(β′)C2
2(γ)− 2C2(β

′)S2(β
′)C2(γ)S2(γ)C1(a)

+ k1k2S
2
2(β′)S2

2(γ)S2
1(a),

or

T 2
2 (α) =

T 2
2 (β′) + T 2

2 (γ)− 2T2(β
′)T2(γ)C1(a) + k1k2T

2
2 (β′)T 2

2 (γ)S2
1(a)

(1 + k2T2(β′)T2(γ)C1(a))2
. (2.5)

Similarly,

S2
2(β′) = C2

2(α)S2
2(γ) + S2

2(α)C2
2(γ) + 2C2(α)S2(α)C2(γ)S2(γ)C1(b)

+ k1k2S
2
2(α)S2

2(γ)S2
1(b),

T 2
2 (β′) =

T 2
2 (α) + T 2

2 (γ) + 2T2(α)T2(γ)C1(b) + k1k2T
2
2 (α)T 2

2 (γ)S2
1(b)

(1− k2T2(α)T2(γ)C1(b))2
, (2.6)

and

S2
2(γ) = C2

2(α)S2
2(β′) + S2

2(α)C2
2(β′)− 2C2(α)S2(α)C2(β

′)S2(β
′)C1(c)

+ k1k2S
2
2(α)S2

2(β′)S2
1(c),

T 2
2 (γ) =

T 2
2 (α) + T 2

2 (β′)− 2T2(α)T2(β
′)C1(c) + k1k2T

2
2 (α)T 2

2 (β′)S2
1(c)

(1 + k2T2(α)T2(β′)C1(c))2
. (2.7)

What does it mean for triangle? From the Sine law (2.1), having function S(x) monotoni-
cally increasing result that the longest side of any triangle is opposite to the largest angle and
the shortest side is opposed to the smallest angle. From the Cosine I law in its form that uses
C1(x) function, having

C1(b)C1(c) + k1S1(b)S1(c) = C1(b− c),

C1(a)C1(b)− k1S1(a)S1(b) = C1(a+ b),

and Ci(x)le1 and is decreasing when ki = 1, Ci(x) = 1 and is constant when ki = 0, Ci(x)ge1
is increasing when ki = −1, we can see:

C1(a) = C1(b)C1(c) + k1S1(b)S1(c)C2(α)
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is equivalent to

a


> b− c, k2 = 1

= b− c, k2 = 0

< b− c, k2 = −1

Similarly,
C1(b) = C1(a)C1(c)− k1S1(a)S1(c)C2(β

′)

is equivalent to

b


< a+ c, k2 = 1

= a+ c, k2 = 0

> a+ c, k2 = −1

From the Cosine II law we can see:

C2(α) = C2(β
′)C2(γ) + k2S2(β

′)S2(γ)C1(a)

is equivalent to

α


> β′ − γ, k1 = 1

= β′ − γ, k1 = 0

< β′ − γ, k1 = −1

Similarly,
C2(β

′) = C2(α)C2(γ)− k2S2(α)S2(γ)C1(b)

is equivalent to

β′


< α + γ, k1 = 1

= α + γ, k1 = 0

> α + γ, k1 = −1

2.2 Right (Quasi)–Triangle Equations

We can define orthogonality in Bn using the orthogonality in RPn. Namely, two vectors v1
and v2 of space RPn are orthogonal, if v1 � v2 = 0.

For B2 plane and a line, the orthogonal bundle is line only if k2 = 1. In this case when line
rotates count–clockwise, its orthogonal line rotates count–clockwise and vice–versa (Figure 1.4
a). When k2 = 0 there is the only orthogonal bundle, which doesn’t rotate (Figure 1.4 b).
When k2 = −1 the orthogonal bundle rotates clockwise when the line rotates count–clockwise
toward to the same limit bundle and vice–versa (Figure 1.4 c).

Generally we can’t speak about right triangle as one of its catheti is line and another
isn’t (when k2 6= 1). However, as we will see, this figure is important. We will name it
right (quasi)–triangle, which means right triangle, when k2 = 1 and right quasi–triangle when
k2 6= 1.

We will construct a (quasi)–triangle as half of isosceles one (Figure 2.2). Consider a triangle
A0B0A

′
0 with A0B0 = A′0B0 = c, A0A

′
0 = 2b, ∠A′0A0B0 = ∠A0A

′
0B0 = α and external angle

∠A0B0A
′
0 = 2β′.



2.2. RIGHT (QUASI)–TRIANGLE EQUATIONS 23

A i
0

B 0

A 0A i

B

AC

A 1

B 1

C1

Figure 2.2: Right (quasi)–triangle equations deduction.

Let A′0 = O = [1 : 0 : 0] be origin, A0 = R1(2b)A
′
0 = [C1(2b) : S1(2b) : 0], B0 = R2(α)R1(c)

A0 = [C1(c) : S1(c)C2(α) : S1(c)S2(α)].

LetABA′ = R1(−b)(A0B0A
′
0) (Figure 2.2, black). Now, A′ = R1(−b)A′0 = [C1(b) : −S1(b) :

0], A = R1(−b)A0 = [C1(b) : S1(b) : 0] and B = R1(−b)B0 = C1(b) k1S1(b) 0
−S1(b) C1(b) 0

0 0 1

 C1(c)
S1(c)C2(α)
S1(c)S2(α)


= [C1(b)C1(c) + k1S1(b)S1(c)C2(α) : −S1(b)C1(c) + C1(b)S1(c)C2(α) : S1(c) S2(α)].

Finally, let C ∈ AA′, AC = A′C = b. Then C = [1 : 0 : 0] is origin. From figure equality
A′BC = ABC result BC ⊥ A′A. Therefore we can consider ABC right (quasi)–triangle.

Having figures A′BC = ABC and C is origin, result B have form B = (x, 0, y), where

C1(b)C1(c) + k1S1(b)S1(c)C2(α) = x,

−S1(b)C1(c) + C1(b)S1(c)C2(α) = 0,

S1(c)S2(α) = y.

From the second equality, have

T1(b) = T1(c)C2(α). (2.8)

Using the value of C2(α) from this equality and putting it in the first one, have

x = C1(b)C1(c) + k1S1(b)S1(c)
T1(b)

T1(c)

=
C1(c)

C1(b)
(C2

1(b) + k1S
2
1(b)) =

C1(c)

C1(b)
.
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Let now calculate the value of

x2 + k1k2y
2 =

C2
1(c)

C2
1(b)

+ k1k2S
2
1(c)S2

2(α)

=
C2

1(c)

C2
1(b)

+ k1S
2
1(c)(1− C2

2(α))

=
C2

1(c)

C2
1(b)

+ k1S
2
1(c)− k1S2

1(c)
T 2
1 (b)

T 2
1 (c)

=
C2

1(c)

C2
1(b)

+ k1S
2
1(c)− k1S2

1(b)
C2

1(c)

C2
1(b)

=
C2

1(c)

C2
1(b)

(1− k1S2
1(b)) + k1S

2
1(c)

=
C2

1(c)

C2
1(b)

C2
1(b) + k1S

2
1(c)

= C2
1(c) + k1S

2
1(c) = 1.

It means that exists a ∈ R, C12(a) = C1(c)
C1(b)

, S12(a) = S1(c)S2(α) that has characteristic k =
k1k2. It is a ‘distance’ parameter BC. We have two more equations:

C1(c) = C12(a)C1(b) (2.9)

S12(a) = S1(c)S2(α) (2.10)

From (2.8) and (2.10) have:

S12(a)

T1(b)
=
S1(c)S2(α)

T1(c)C2(α)
= C1(c)T2(α),

using the value of C1(c) from (2.9) have

S12(a)

T1(b)
= C12(a)C1(b)T2(α),

T12(a) = S1(b)T2(α). (2.11)

The last 6 equations will include β′. In order to be able to deduce them we will introduce
translation T(−a), so as T(−a)B = C. Having characteristic a is k1k2 = K2,

T(−a) =

 C12(a) 0 K2S12(a)
0 1 0

−S12(a) 0 C12(a)

 .

We can check this map preserves vector product.
Applying T(−a), obtain B1 = T(−a)B = [1 : 0 : 0], C1 = T(−a)C = [C12(a) : 0 : −S12(a)]

and A1 = T(−a)A =  C12(a) 0 K2S12(a)
0 1 0

−S12(a) 0 C12(a)

C1(b)
S1(b)

0


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= [C12(a)C1(b) : S1(b) : −S12(a)C1(b)] = [C1(c) : S1(c)C2(β
′) : −S1(c)S2(β

′)] (Figure 2.2, cyan).
From here we have

S1(b) = S1(c)C2(β
′). (2.12)

Moreover, having (2.9), obtain

S12(a)C1(b) = S1(c)S2(β
′),

S12(a)
C1(c)

C12(a)
= S1(c)S2(β

′),

T12(a) = T1(c)S2(β
′). (2.13)

Combining the last 2 equalities (2.12), (2.13) with (2.9), we have

T12(a)

S1(b)
=

T1(c)S2(β
′)

S1(c)C2(β′)

=
T2(β

′)

C1(c)
=

T2(β
′)

C12(a)C1(b)
,

S12(a) = T1(b)T2(β
′). (2.14)

Now, having (2.8) and (2.12):

T1(c)C2(α) = T1(b) =
S1(b)

C1(b)
=
S1(c)C2(β

′)

C1(b)
,

calculate with (2.9):

C1(b) =
S1(c)C2(β

′)

T1(c)C2(α)

= C1(c)
C2(β

′)

C2(α)

= C12(a)C1(b)
C2(β

′)

C2(α)
,

C12(a)
C2(β

′)

C2(α)
= 1,

C2(α) = C12(a)C2(β
′). (2.15)

Now from (2.11), (2.12) and (2.13),

T12(a) = S1(b)T2(α) = T1(c)S2(β
′),

S1(c)C2(β
′)T2(α) = T1(c)S2(β

′),

T2(β
′) = C1(c)T2(α). (2.16)

Finally, by multiplying the last equations (2.15) and (2.16), have using (2.9):

C1(c)T2(α)C2(α) = T2(β
′)C12(a)C2(β

′),

C1(c)S2(α) = C12(a)C2(β
′),

C12(a)C1(b)S2(α) = C12(a)S2(β
′),

S2(β
′) = C1(b)S2(α). (2.17)
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It is necessary to modify equations (2.9) and (2.15) in order to not contain the C(x)
function.

k1S
2
1(c) = 1− C2

1(c) = (C2
12(a) + k1k2S

2
12(a))(C2

1(b) + k1S
2
1(b))− C2

12(a)C2
1(b)

= k1k2S
2
12(a)C2

1(b) + k1C
2
12(a)S2

1(b) + k21k2S
2
12(a)S2

1(b),

S2
1(c) = k2S

2
12(a)C2

1(b) + C2
12(a)S2

1(b) + k1k2S
2
12(a)S2

1(b)

By dividing the last equality by its C(x) form, obtain:

T 2
1 (c) = k2T

2
12(a) + T 2

1 (b) + k1k2T
2
12(a)T 2

1 (b). (2.18)

Similarly,

k2S
2
2(α) = 1− C2

2(α) = (C2
12(a) + k1k2S

2
12(a))(C2

2(β′) + k2S
2
2(β′))− C2

12(a)C2
2(β′)

= k2C
2
12(a)S2

2(β′) + k1k2S
2
12(a)C2

2(β′) + k1k
2
2S

2
12(a)S2

2(β′),

S2
2(α) = C2

12(a)S2
2(β′) + k1S

2
12(a)C2

2(β′) + k1k2S
2
12(a)S2

2(β′)

By dividing the last equality by its C(x) form, obtain:

T 2
2 (α) = k1T

2
12(a) + T 2

2 (β′) + k1k2T
2
12(a)T 2

2 (β′) (2.19)

Note that for k2 = 1 equations (2.8) — (2.19) can be used if external angle β′ change to
internal β with the following changes:

β =
π

2
− β′

cos β = sin β′

sin β = cos β′

tan β = cot β′

cot β = tan β′

2.3 More rotations

As we can see, transformation T(−a) preserves vector product. In order to be a motion
it needs to be presented as finite product of main rotations. If a, b, c, α and β′ are real
numbers for which have place equalities (2.8) — (2.17) then it can be checked that T(a) =
R2(β

′)R1(c)R2(−α)R1(−b). We will introduce new transformations as following:

Rij(φ) =



1 . . . 0 . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . Ci+1,...j(φ) . . . −Kj

Ki
Si+1,...j(φ) . . . 0

...
. . .

...
. . .

...
. . .

...
0 . . . Si+1,...j(φ) . . . Ci+1,...j(φ) . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . 0 . . . 1


.

It’s easy to see that all Rij(φ) are motions. All they can be presented as finit product of
main rotations. We will name them rotations of the space Bn. In special case, R0i(φ) we will
name them translations Ti(φ) of the space.
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2.4 Generalized Orthogonal Matrix

For RPn with given specification kp, p = 1, n we will name the vector x ∈ RPn upper i-
normalized, i ∈ 0, n if 1

Ki
x � x = 1. For 0 ≤ i < j ≤ n we will name two vectors x and y

upper ij-orthogonal if 1
Kmin(i,j)

x � y = 0. We will name the matrix M(n+1)×(n+1) composed of

columns ci upper orthogonal if all columns ci are upper i-normalized and any two columns ci
and cj are upper ij-orthogonal.

It’s easy to see that all main rotation matrixes are upper orthogonal. Moreover product of
two upper orthogonal matrix is upper orthogonal. Really, let X, Y are two upper orthogonal
matrices. It means that X is composed of (x0, ..., xn) columns and Y — from (y0, ..., yn)
columns, and 1

Kmin(i,j)
xi � xj = 1

Kmin(i,j)
yi � yj = δij for all i, j = 0, n, where δij = 1, i = j and

δij = 0, i 6= j. Let Z = XY with elements zij =
∑n

p=0 xipypj. Let zi and zj be 2 columns of Z.
Let calculate

1

Kmin(i,j)

zi � zj =
1

Kmin(i,j)

n∑
p=0

Kpzpizpj

=
1

Kmin(i,j)

n∑
p=0

Kp

(
n∑

m1=0

xpm1ym1i

)(
n∑

m2=0

xpm2ym2j

)

=
1

Kmin(i,j)

n∑
p=0

Kp

n∑
m1=0

n∑
m2=0

xpm1xpm2ym1iym2j

=
1

Kmin(i,j)

n∑
m1=0

n∑
m2=0

ym1iym2j

n∑
p=0

Kpxpm1xpm2

=
1

Kmin(i,j)

n∑
m1=0

n∑
m2=0

ym1iym2jKmin(m1,m2)δm1m2

=
1

Kmin(i,j)

n∑
m=0

ymiymjKm

= δij

We will name the vector x ∈ RPn lower i-normalized, i ∈ 0, n if Ki

∑n
j=0

x2j
Kj

= 1. For

0 ≤ i < j ≤ n we will name two vectors x and y lower ij-orthogonal if Kmax(i,j)

∑n
p=0

xpyp
Kp

= 0.

We will name the matrix M(n+1)×(n+1) composed of rows ri lower orthogonal if all rows ri are
lower i-normalized and any two rows ri and rj are lower ij-orthogonal.

It’s easy to see that all main rotation matrixes are also lower orthogonal. Moreover product
of two lower orthogonal matrices is lower orthogonal. Really, let X, Y are two lower orthogonal
matrices. It means that X is composed of (x0, ..., xn) rows and Y — from (y0, ..., yn) rows,
where Kmax(i,j)

∑n
p=0

xipxjp
Kp

= Kmax(i,j)

∑n
p=0

yipyjp
Kp

= δij for all i, j = 0, n. Let Z = XY . Let
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calculate

Kmax(i,j)

n∑
p=0

zipzjp
Kp

= Kmax(i,j)

n∑
p=0

1

Kp

(
n∑

m1=0

xim1ym1p

)(
n∑

m2=0

xjm2ym2p

)

= Kmax(i,j)

n∑
p=0

1

Kp

n∑
m1=0

n∑
m2=0

xim1xjm2ym1pym2p

= Kmax(i,j)

n∑
m1=0

n∑
m2=0

xim1xjm2

n∑
p=0

1

Kp

ym1pym2p

= Kmax(i,j)

n∑
m1=0

n∑
m2=0

xim1xjm2

δm1m2

Kmax(m1,m2)

= Kmax(i,j)

n∑
m=0

ximxjm
Km

= δij

For some upper orthogonal matrix X has place the equality

1

Kj

n∑
i=0

Kix
2
ij = 1,

n∑
i=0

Kix
2
ij = Kj,

n∑
i=0

x2ij

i∏
p=1

kp =

j∏
p=1

kp.

Let divide it to Kq, q ≤ j:

q−1∑
i=0

Ki

Kq

x2ij +
n∑
i=q

Ki

Kq

x2ij =
Kj

Kq

.

As Kq divides Kj and Ki, i ≥ q, but Kq doesn’t divide Ki, i < q, result that for 0 ≤ i < j ≤ n,
xij divide Kq/Ki for all i < q ≤ j, or xij divide Kj/Ki.

Having for some upper orthogonal matrix X, elements xij divide Kj/Ki, construct the

matrix Y of the same size with elements yij =
√

Ki

Kj
xij. The matrix Y is orthogonal one1 (if

may be complex, in this case it isn’t unitar, but orthogonal). Really, for some i = 0, n,

n∑
i=0

y2ij =
n∑
i=0

Ki

Kj

x2ij =
1

Kj

n∑
i=0

Kix
2
ij = 1

1consider
√

0 = 0.
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and for some j1 6= j2 = 0, n,

n∑
i=0

yij1yij2 =
n∑
i=0

Ki√
Kj1Kj2

xij1xij2

=
Kmin(j1,j2)√
Kj1Kj2

1

Kmin(j1,j2)

n∑
i=0

Kixij1xij2

=
Kmin(j1,j2)√
Kj1Kj2

0 = 0,

because xij1xij2 divides

√
Kj1

Kj2

Ki
.

For some orthogonal matrix always has place also the following equalities for i1 6= i2 = 0, n:

n∑
j=0

y2ij =
n∑
j=0

Ki

Kj

x2ij = Ki

n∑
j=0

1

Kj

x2ij = 1,

n∑
j=0

yi1jyi2j =
n∑
j=0

√
Ki1Ki2

Kj

xi1jxi2j

=

√
Ki1Ki2

Kmax(i1,i2)

Kmax(i1,i2)

n∑
j=0

1

Kj

xi1jxi2j

=

√
Ki1Ki2

Kmax(i1,i2)

0 = 0

So, xi1jxi2j divides
Kj√
Ki1

Ki2

. It means that X is also lower orthogonal matrix.

Inverse orthogonal matrix Y −1 is easy constructed as y′ji = yij. Then√
Kj

Ki

x′ji =

√
Ki

Kj

xij,

x′ji =
Ki

Kj

xij.

The last equality isn’t applicable if some characteristic ki = 0. Although is true, it isn’t
determinable having the form of 0/0. If some characteristic km = 0,m < n, the matrix has
the form:

M =

(
A O
B C

)
Really, for the first m columns the upper orthogonality condition is equivalent to:

n∑
i=0

Ki

Kj

x2ij =
m−1∑
i=0

Ki

Kj

x2ij, ∀j = 0,m− 1,

n∑
i=0

Ki

Kj1

xij1xij2 =
m−1∑
i=0

Ki

Kj1

xij1xij2 ,∀j1 = 0,m− 1, j2 = 0, n, j1 < j2,
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Having Kj 6= 0 and Ki = 0, all terms, starting with i = m equals to zero. So, matrix A is
upper orthogonal of size m ×m and matrix B is free of size (n −m + 1) ×m. For the last
n−m+ 1 columns upper orthogonality has form:

n∑
i=0

Ki

Kj

x2ij =
n∑

i=m

∏i
p=m kp∏j
p=m kp

x2ij,∀j = m,n,

n∑
i=0

Ki

Kj1

xij1xij2 =
n∑

i=m

∏i
p=m kp∏j1
p=m kp

xij1xij2 , ∀j1 < j2 = m,n,

because Kj = 0. It means the matrix C is upper orthogonal of size (n−m+ 1)× (n−m+ 1)
and the matrix O is obligatory zero one of size m × (n − m + 1) (otherwise elements of M
aren’t finite).

It’s easy to verify that inverse matrix has form:

M−1 =

(
A−1 O

−C−1BA−1 C−1

)
This way of calculating the inverse matrix can easy be generalized to either number of null
characteristics.

We will name upper orthogonal matrixes (which also are lower orthogonal) generalized
orthogonal. We will use the term orthogonal matrix meaning generalized orthogonal matrix
if isn’t stated otherwise. As we can see, the orthogonal matrix set is closed in respect of
multiplying, it contains the unit element and for any element it contains its inverse. So the
orthogonal matrix set form isomentry group of space. All motion matrices are generalized
orthogonal.

2.5 Orthogonal Matrix as Product of Rotations

Let X will be orthogonal matrix. We will search the rotation matrices, the product of which
gives X. Note that The matrix XRij(φ) have all columns xp of X except i and j ones. These

columns are x′i = xiCi+1...j(φ) + xjSi+1...j(φ) and x′j = −Kj

Ki
xiSi+1...j(φ) + xjCi+1...j.

For the last row let separate elements xi, i = 0, n in three categories: having characteristics
Kn/Ki equals to 1, 0 and −1. Note that for i row the i element is always of the category 1,
because its characteristic is Ki/Ki = 1. We will multiply X on the right by Rin(φ), i = 0, n in
order to have in the n-th row a single element of category 1 and single element of category −1,
different from 0. All these rotations are elliptic ones. For elements of the same characteristic
xni and xnj we can use cosφ = xni√

x2ni+x
2
nj

and sinφ = − xnj√
x2ni+x

2
nj

. Moreover, always xnn 6= 0.

Now, we have one element of category 1 and one of category −1, different from zero (the
n-th one and, for example, the p-th one) and element of category 1 has absolute value greater
then the element of category −1 because for this lower n-normalized row have place equality
x2nn−x2np = 1. It means that exists φ ∈ R so that coshφ = xnn√

x2nn−x2np

and sinhφ = − xnp√
x2nn−x2np

and hyperbolic rotation that transforms the element of category −1, xnp in x′np = 0 and the
element of category 1, xnn in x′nn 6= 0.
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For category 0 there exist parabolic rotations, that preserves the element of category 1
(xnn) and elements of category 0 transform in 0. For this case, if one this element is on q-th
column, φ = −xnq. The last non–zero element xnn equals to 1 or −1, because the last row is
lower n-normalized.

We can consider the first n columns as having n elements (the last one equals to zero).
They form orthogonal matrix of size n. The last, (n+1)-th column (without the last element)
is upper in-orthogonal to first n columns, i = 0, n− 1. As these columns have n elements
each, (n+ 1)-th column is obligatory null (excluding the last its element).

In this stage we can consider the resulting matrix as having size n instead of n + 1 and
repeat the process for it. Finally obtain the matrix E which has elements on main diagonal 1 or
−1 and all rest elements 0. It is the reflection matrix on a point or line or plane or hyperplane.
Obtain the equality: X

∏q
j=1Mj = E. It’s easy to see that X = E

∏1
j=qM

−1
j (q = (n+1)n/2).

Strictly speaking, the matrix E can’t be presented as product of rotations. In order to identify
motions of Bn with orthogonal matrices, we should name E (which preserve vector product)
motion. However, these motions are improper (there is no continuous parameterization of
motion M(α) on a segment [0, 1] such that M(0) = I,M(1) = E and all M(α) are motions
on all α ∈ [0, 1]). Having in expression for X determinant of matrices Mi equals to 1 and
determinant of E is ±1, determinant of X equals ±1.

2.6 Coordinate and State Matrix

Consider in some space Bn n+1 vectors v0, ...vn. Let coordinates of vi are [v0i : ... : vni] , i = 0, n.
Let vectors vi are ordered and form basis of Bn (not obligatory orthonormal). Compose the
matrix V with elements vij, i, j = 0, n. Will name it coordinate matrix for vectors vi. Construct
also the matrix M of size (n + 1) × (n + 1) with elements mi,j =

vi�vj
Ki

. We will name the
matrix M state matrix of vi. Having vi is space basis, elements mij are all finite. State matrix
shows how orthonormal is some vector family. It tends to unite one when vectors are more
normalized and orthogonal to each other2. We will demonstrate that volume of parallelepiled
constructed on vectors vi equals to | detV | and

detM = (detV )2 . (2.20)

First, let vi, i = 0, n are orthonormal. Then the parallelepiped volume is 1, the matrix V is
orthogonal one and detV = ±1. So, | detV | equals to parallelepiped volume. All elements on
main diagonal mii = 1, because all vectors vi are upper i-normalized. All elements above main
diagonal are mij = 0, i < j, because all vectors vi and vj are upper ij-orthogonal (elements
under the main diagonal may differ from 0). It means that the matrix M is lower triangular
with all elements on main diagonal equls to 1 and detM = 1 = (detV )2.

Further, note that x�(y+z) = x�y+x�z, (x+y)�z = x�z+y�z, (αx)�y = α(x�y) =
x � (αy),∀x, y, z ∈ Bn, α ∈ R. Matrix determinant equals to zero if it contain proportional
columns or rows. When some row or column of a matrix is multiplied by α, the resulting
matrix determinant is α times original matrix determinant. When some row or column is sum

2If space specification contains null characteristics, some elements of state matrix can have any value, even
for orthonormal vector family.
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of two rows / columns, then the matrix determinant equals to sum of determinants of matrices
containing the first and the second row / column.

Second, let instead of some vi use v′i = αvi. In this case parallelepiped volume grows in α
times and | detV ′| = |α|| detV |. Moreover, detM ′ = α2 detM = (α detV )2 = (detV ′)2.

Third, let instead of some vi use v′i = vi + αvj. In this case parallelepiped volume remains
unchanged, as well as determinant of V , and detM ′ = detM = (detV )2 = (detV ′)2.

Finally, observe, that all matrices V result from orthogonal matrices using operations form
the second and the third step. It means the equation (2.20) is true for all matrices and volume
of parallelepiped constructed on vectors vi equals to | detV |.

When somebody calculates the parallelepiped volume it’s usefull to use the state matrix.
Its elements don’t change on motions and it is always square, even when the number of vectors
is less then the space dimension (the matrix V isn’t square in this case).

2.7 Plane definition and Specification. Lineals and their

Specification

Having Bm ⊂ RPm, all m-dimensional planes Bn (m < n) lie in RPn with one global condition
for vectors X ∈ RPm ⊂ PRn: X �X = 1. Leaving this condition (it doesn’t change on any
motion), we can consider m-dimensional planes of Bn as m-dimensional planes of RPn.

By definition, m-dimensional plane Lm results from subspace Bm on some motion. Sub-
space Bm has the first m + 1 columns of unite matrix with dimension n + 1 as its basis.
Multiplying the basis matrix of Bm by some orthogonal matrix result basis matrix of Lm as
first m + 1 columns of orthogonal matrix. Being a subspace, specification of Bm contain the
first m characteristics of specification Bn.

What happens if we take any m + 1 columns of some orthogonal matrix as basis? Let
column indices i0, i1, ...im and ip = 0, n. It’s easy to see that motions that preserve this figure
only change these columns (interior figure motions) or change no these columns (motions of
Bn that preserve all its points). Thus, figure characteristics K ′p = Kip , p = 0,m, or k′p =

K ′p/K
′
p−1 = Kip/Kip−1 =

∏ip
j=ip−1+1 kj, p = 1,m is its specification. These figures generally

speaking are not planes. We will name them lineals. We will name planes also lineals.
It may happen, that some lineal has K ′0 6= 1 (space and planes have it equals to 1). In this

case lineal may not intersect the space sphere and may not have image. We will name lineals
that have no image improper. Although they have no image, their properties help studying
the space geometry.

One more interesting case is when the space specification has characteristic −1 and some
lineal is constructed on limit vectors for this characteristic. Such lineals can’t be constructed
from matrices get as finite product of motions. They can be constructed as limit of infinite
products. These lineal specifications can’t be deduced from space specification.

For example, let space B2 has specification {1,−1}. Vectors [0 : 1 : 1] and [0 : −1 : 1] can’t
result from coordinate vectors on finite product of motions. However, there exist translations
along these vectors (interior lineal translations):

M =

 1 −2S0(
φ
2
) −2S0(

φ
2
)

2S0(
φ
2
) 1− 2S2

0(φ
2
) −2S2

0(φ
2
)

−2S0(
φ
2
) 2S2

0(φ
2
) 1 + 2S2

0(φ
2
)

 ,
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W =

 1 2S0(
ψ
2
) −2S0(

ψ
2
)

−2S0(
ψ
2
) 1− 2S2

0(ψ
2
) 2S2

0(ψ
2
)

−2S0(
ψ
2
) −2S2

0(ψ
2
) 1 + 2S2

0(ψ
2
)

 .

These motions matrices use functions C0(x) and S0(x) have characteristic 0, despite the fact
the space specification doesn’t contain zero. These translations are border space motions
between elliptic and hyperbolic ones.

2.8 Projection of Vector on Lineal and on its Orthogo-

nal Completion

We will name some vector v′ projection of vector v on lineal Lm, if v′ ∈ Lm, v − v′ ⊥ Lm. Let
lineal Lm is constructed on vectors l0, ...lm. Then v′ =

∑m
i=0

v�li
Ki
li. Evident, v′ ∈ Lm. Let’s

see:

(v − v′)� lj =

(
v −

m∑
i=0

v � li
Ki

li

)
� lj

= v � lj −
m∑
i=0

v � li
Ki

(li � lj)

= v � lj −
v � lj
Kj

(lj � lj)

= v � lj −
v � lj
Kj

Kj = 0,

for all j = 0,m, in other words, v′′ = v − v′ ⊥ Lm. When some Ki = 0, expression v�li
Ki

has
undefined value. It happens when some vector direction is orthogonal to all others. In this
case there is impossible to determine unique orthogonal vector. However, any value of this
expression, for example 0, is valid, as it corresponds to some orthogonal vector.

2.9 Basis Change in Lineal. Unique Form of Lineal

Let Lm ⊂ Bn is some space lineal, defined by matrix of size (n + 1) × (m + 1). The matrix
columns li, i = 0,m form basis of lineal. Consider vector a = [a0 : ... : am] ∈ Lm. Let vector
coordinates in Bm are v = [v0 : ... : vn]. Then v = Lma. Let M be interior motion of lineal
Lm, defined by matrix of size (m + 1) × (m + 1). And let coordinates of a in new basis L′m

are b = [b0 : ... : bm]. Then b = Ma. Now v = L′mb. Having the fact the coordinates of vector
v in Bn don’t change, result matrix equality:

Lma = v = L′mb = L′m(Ma) = (L′mM)a.

This equality doesn’t depend on vector a, then

Lm = L′mM (2.21)

is equation of basis change in lineal.
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It is necessary to find the unique form of lineal definition. Consider the following algorithm
for the unique basis search:

1. Let ip, p = 0, n is basis of Bn. Start with empty basis of Lm.

2. Until new basis has less then m + 1 elements, search for i′p as projection of next ip on
Lm.

(a) If projection isn’t null, find new vector i′′p as projection of i′p on orthogonal comple-
tion of existing basis li.

(b) If i′′p isn’t null, find its position as free index 0 ≤ q ≤ m so that r2 = 1
Kq
i′′p � i′′p > 0.

(c) Norm it and add to existing basis lq =
i′′p
r

.

2.10 Measure Calculus Between Lineals

phi

psi

y0

y1

y2

yi2x0

x1

xi
0

xi
1

Vx

V i
x

V ii
y

Vy

Figure 2.3: Measure calculus between lineals
X2 and Y 2.

Let Xp, Y q, p ≤ q ≤ n are two lineals. Let
xi, i = 0, p is the basis of Xp. Let X ′p be
projection of Xp on Y p (Figure 2.3) and let
x′i be projection of xi on Y p (they are not or-
thonormal). If the volumes of parallelepipeds
constructed on vectors xi and x′i are equals
to Vx and V ′x respectively and the angle be-
tween Xp and Y q is measurable and equals
to φ, then has place the equality:

V ′x = VxC(φ).

This equality is a particular case of (2.8),
when k1 = 0, T (x) = x. In our case al-
ways k1 = 0, because the space model is lin-
ear. As were discussed earlier, Vx = 1 and
V ′x =

√
detM ′

x, where M ′
x is state matrix of

vectors x′i:

C(φ) =
√

detM ′
x. (2.22)

It may happen that characteristic of φ equals
to zero and we can’t calculate C−1(φ). If we
project vectors xi on Y q

⊥ orthogonal comple-
tion of Y q (suppose it has dimension at least
p), get X ′′p constructed on vectors x′′i with
the volume V ′′x , then by (2.13) get:

V ′′x = VxS(φ).

Or, having M ′′
x state matrix for vectors x′′i ,

S(φ) =
√

detM ′′
x . (2.23)
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If the dimension of Y q
⊥ is less then p, then we can get S(φ) by projecting of Y q

⊥ on Xp. If φ
isn’t measurable, then the angle ψ between Xp and Y q

⊥ is measurable and:

S(ψ) =
√

detM ′
x, (2.24)

C(ψ) =
√

detM ′′
x . (2.25)

The angles φ and ψ present measure between lineals Xp and Y q. Having values C(φ), S(φ)
and C(ψ), S(ψ), it is possible to determine φ and ψ. The measure characteristic of φ and
ψ equals to measure characteristic between X ′p and X ′′p. Depending on this characteristic,
situation can be one of the following:

• If characteristic equals to 1, then detM ′
x + detM ′′

x = 1 and φ = tan−1
√

detM ′′x
detM ′x

, ψ =

tan−1
√

detM ′x
detM ′′x

.

• If characteristic equals to 0, then either detM ′
x = 1 and φ =

√
detM ′′

x , ψ = ∞, or

detM ′′
x = 1, and φ =∞, ψ =

√
detM ′

x.

• If characteristic equals to −1, then either detM ′
x−detM ′′

x = 1 and φ = tanh−1
√

detM ′′x
detM ′x

,

ψ isn’t measurable, or detM ′′
x−detM ′

x = 1 and φ isn’t measurable, ψ = tanh−1
√

detM ′x
detM ′′x

,

or detM ′′
x = detM ′

x and φ = ψ =∞.

2.11 Volume Calculation

We can see that for any Bn seen as a unit sphere in Rn+1, the surface is orthogonal to radius.
Let X, Y ∈ Bn and the distance between X and Y is small. Let O = (0, 0, ..., 0) is origin of
Rn+1. We will see that (O−X)�(Y −X) = 0 when Y → X in sense of distance between them.
O−X = −X, (O−X)�(Y −X) = −X�(Y −X) = X�X−X�Y = 1−C1(d(X, Y )), where
d(X, Y ) is distance between X and Y . When Y → X, d(X, Y )→ 0 and 1−C1(d(X, Y ))→ 0.

Let A,B ∈ B1. A = [C1(α) : S1(α)], B = [C1(β) : S1(β)], where C1(x), S1(x) and T1(x)
are defined as (1.2), (1.3) and (1.4). Let calculate in R2 the area of B1 sector between A and
B. In Euclidean polar system the argument tanφe = y/x = S1(φ)/C1(φ) = T1(φ), where φ
is native argument in B1. The Euclidean radius ρ =

√
x2 + y2 =

√
C2

1(φ) + S2
1(φ). Having

dφe = dφ
(1+T 2

1 (φ))C
2
1 (φ)

, the area is:

S =
1

2

∫ B

A

ρ(φe)
2dφe =

1

2

∫ B

A

(C2
1(φ) + S2

1(φ))
dφ

C2
1(φ)(1 + T 2

1 (φ))

=
1

2

∫ B

A

C2
1(φ) + S2

1(φ)

C2
1(φ) + S2

1(φ)
dφ =

1

2

∫ B

A

dφ =
1

2
φ

∣∣∣∣β
α

=
β − α

2
.

That is, 2S equals to length AB.
Let F ⊂ Bn be some figure with volume (in sense of Bn) VB. We will name VR the volume

(in sense of Rn+1) of cone with base F ⊂ Bn and vertex O /∈ Bn origin of Rn+1 (Figure
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O

F

Figure 2.4: Figure F ⊂ Bn volume calculation with aid of cone in Rn+1.

2.4). As Bn is orthogonal to radius, F also is orthogonal. The radius equals 1, because
∀X ∈ Bn, X �X = 1. Then for each figure F ⊂ Bn have place equality:

VB = (n+ 1)VR

As motions preserve Bn and the absolute value of their matrices’ determinant is 1, all
motions preserve VR and thus, they preserves also VB.



Chapter 3

Theory Application

3.1 Space and Lineal Specification Search Algorithm

As we can see, the theory described in this book is universal and easy applicable. However, one
issue stops somebody from using it. Geometric spaces are classified and defined different from
the way adopted here. Therefore, in order to not loose the feeling of reality, we will describe an
algorithm aimed to find specification for some geometric space. The algorithm can be applied
to any space where have sense notions of points, lines, planes, subspaces, distances, angles and
/ or motions.

1. Let m equals to the greatest number of general situated points, or same, the lowest
number of vertices in a polyhedron of positive volume.

2. Count space dimension as n = m− 1.

3. Name points 0-dimensional planes and lines 1-dimensional planes.

4. For i = 1, n do:

(a) If among (i − 1)-dimensional planes there are non-congruent ones, then the space
definition or space terminology is inconsistent. Theory still can be used, however, in
order to understand it correctly, it is necessary to modify terminology or to define
otherwise some space elements (about it later).

(b) If the measure between (i− 1)-dimensional planes is bounded, then ki = 1.

(c) If the measure between (i− 1)-dimensional planes is scalable, then ki = 0.

(d) Otherwise, ki = −1.

5. Having space dimension n and specification {k1, ..., kn}, use theory.

The necessity of proper terminology, uniform among all spaces is required by wish to have
such a theory, that isn’t misleading and helps us to study the space structure and to compare
it with other spaces. Still, under inconsistent theory / terminology we should understand it
has a contradiction, but failing it to match to theory / terminology that is common today.
We assume the following here:

37
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• All the planes of any dimension are congruent, including points and lines.

• Theory allows the duality principle of (m−1)-dimensional planes and (n−m)-dimensional
ones.

We should mention that ‘common terminology’ may change over the time. In order to un-
derstand what it is consider an example of inconsistent terminology. The Minkowskii space is
successfully used in physics to describe the theory of relativity. Unfortunately, from geometry
point of view, it have no proper terminology. The notions of ‘space–like lines’, ‘time–like lines’
and ‘light–like lines’ have sense in physics, but not in geometry. Corresponding geometric
notions are: ‘I-st category lines’, ‘II-nd category lines’ and ‘III-rd category lines’. No space
motion maps some line of a category into some line of another category. There is no con-
tradiction here, but there is an inconsistence. What happens if somebody wants to define a
space with five categories of lines1? Nobody defines several kinds of points. All points are
congruent2. Why shouldn’t be lines all congruent? At the other hand, relative position of
points may differ. If we name lines only the I-st category of lines, then we should exclude
II-nd and III-rd category of lines from lines. At the first look, it conflicts with the axiom that
claims any two points can be connected with a line. But this axiom may have no place in
other spaces. In contrast, just Euclidean geometry, where all points are connectable, gives
us an example of parallel lines (that have no common point). Using the duality principle, it
should exist the notion of non-connectable points (that have no common line).

It should be mention, that even for somebody feels comfortable using this theory, the
algorithm described earlier may help to determinate the specification of some exotic lineals (for
example, of ones defined as limit lineals, which aren’t deductable from the space specification).

3.2 Some Special Spaces

Many linear spaces are defined using the quadric form of distance d2(X, Y ) = (Y−X)�(Y−X).
As for these spaces k1 = 0, K0 = 1, Ki = 0, i > 0. In this case, the equality 1 = C(d(X, Y )) =
X � Y = 1 is trivial and can’t be used for distance calculation. Consider one more vector
product — ⊗ such as (X � Y )2 + k1(X ⊗ Y )2 = 1,∀X, Y ∈ Bn, k = {−1, 0, 1}. This product

1Depending on concrete space, there can exist more categories of two–dimensional planes. For further
dimensions of planes the number of their categories grows.

2The notion of points on infinity is used in projective geometry. These points are non-congruent with
others. The terminology is not common in a scope of analytic geometry.
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is similar to exterior vector product. Change 1 = (X �X)(Y � Y ):

(X ⊗ Y )2 =
1

k1
((X �X)(Y � Y )− (X � Y )2)

=
1

k1

((
n∑
i=0

Kix
2
i

)(
n∑
j=0

Kjy
2
j

)
−

(
n∑
i=0

Kixiyi

)(
n∑
j=0

Kjxjyj

))

=
1

k1

n∑
i=0

n∑
j=0

KiKj(x
2
i y

2
j − xixjyiyj)

=
1

k1

n∑
i<j=0

KiKj(x
2
i y

2
j + x2jy

2
i − 2xixjyiyj)

=
1

k1

n∑
i<j=0

KiKj(xiyj − xjyi)2

So,

X ⊗ Y =

√√√√ 1

k1

n∑
i<j=0

KiKj(xiyj − xjyi)2. (3.1)

Note that from Bn = {x ∈ RPn |x � x = x20 = 1} result x0 = 1 or x0 = −1. As x ∈ Bn
implies −x ∈ Bn we can consider x0 = 1. We will use ⊗ operator for distance d(X, Y )
between points X and Y . Note that having C2(x) +k1S

2(X) = 1,∀x ∈ R, k1 = {−1, 0, 1} and
(X �X)2 + k1(X ⊗ Y )2 = 1,∀X, Y ∈ Bn, k1 = {−1, 0, 1} result S(d(X, Y )) = X ⊗ Y, ∀X, Y ∈
Bn:

d2(X, Y ) = S2(d(X, Y )) = (X ⊗ Y )2 =
1

k1

n∑
i<j=0

KiKj(xiyj − xjyi)2

In this sum all non–zero terms are those for which i = 0:

d2(X, Y ) =
1

k1

n∑
j=1

Kj(x0yj − xjy0)2

=
n∑
j=1

Kj

k1
(yj − xj)2

=
n∑
j=1

(yj − xj)2
n∏
p=2

kp

In this equality don’t appear x0 or y0. We can consider Bn a hyperplane of Rn+1 with equation
x0 = 1 and specification {k2, ...kn}. We can identify it with Rn. Then the equality above is
equivalent to (Y −X)� (Y −X).

It means firstly, that scalar product of vestors in lnear spaces (k1 = 0) induces the same
metrics that is used in the model, and secondly, that non–linear spaces with specification
{k1, k2, ...kn} (k1 6= 0) are best approximated by linear spaces with specification {0, k2, ...kn}.
Note also that from here deduce that non–linear space with specification {k1, ...kn} is enclosed
in model meta–space of greater by one dimension, of which specification is {0, k1, ...kn}.
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We can use this quadric form to search for all characteristics except k1 = 0. We will use
this method in order to describe some special spaces by specifying their specifications.

Case 1. Elliptic, Euclidean and Hyperbolic Spaces. Elliptic, linear (Euclidean) and
hyperbolic (Bolyai-Lobachevsky) spaces have characteristic k1 equals to sign of space curvature
k1 = 1 for elliptic space, k1 = 0 for linear space and k0 = −1 for hyperbolic space.

All these spaces are usually approximated by Euclidean one. We can calculate the rest of
characteristics using euclidean quadric form. Let dimension is 3:

d(X, Y )2 = (y1 − x1)2 + (y2 − x2)2 + (y3 − x3)2

= (y1 − x1)2 + k2(y2 − x2)2 + k2k3(y3 − x3)2

so k2 = 1 and k2k3 = 1, k3 = 1.

Case 2. Minkowskii Space. The distance between X and Y is calculated (for time–like
vectors) as

d2(X, Y ) = (y1 − x1)2 − (y2 − x2)2 − (y3 − x3)2 − (y4 − x4)2

= (y1 − x1)2 + k2(y2 − x2)2 + k2k3(y3 − x3)2 + k2k3k4(y4 − x4)2

where coordinate 1 is time–like and coordinates 2, 3 and 4 are space–like. So k2 = −1,
k2k3 = −1, k3 = 1 and k2k3k4 = −1, k4 = 1. As Minkowskii space is linear, k1 = 0.

If we introduce curvature in space, its structure changes. For example, let k1 = 1. Then

X � Y = x0y0 + k1x1y1 + k1k2x2y2 + k1k2k3x3y3 + k1k2k3k4x4y4

= x0y0 + x1y1 − x2y2 − x3y3 − x4y4

so time characteristic becomes elliptic and space characteristic becomes hyperbolic. If k1 = 1,
then

X � Y = x0y0 + k1x1y1 + k1k2x2y2 + k1k2k3x3y3 + k1k2k3k4x4y4

= x0y0 − x1y1 + x2y2 + x3y3 + x4y4

and time characteristic becomes hyperbolic and space characteristic becomes elliptic.

Case 3. Minkowskii Space with 2-dimensional Time. Consider a 4-dimensional space
with distance quadric form that has 2 positive signs and 2 negative. This space is sometimes
named Minkowskii space with 2-dimensional time:

d2(X, Y ) = (y1 − x1)2 + (y2 − x2)2 − (y3 − x3)2 − (y4 − x4)2

= (y1 − x1)2 + k2(y2 − x2)2 + k2k3(y3 − x3)2 + k2k3k4(y4 − x4)2

So k2 = 1, k2k3 = −1, k3 = −1 and k2k3k4 = −1, k4 = 1. As for all lineal spaces, k1 = 0 for
it.
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Case 4. Spaces with Degenerate Distance Quadric Form. Consider linear 4-dimensional
space (k1 = 0) with degenerate distance quadric form:

d2(X, Y ) = (y1 − x1)2 + (y2 − x2)2 + (y3 − x3)2

= (y1 − x1)2 + k2(y2 − x2)2 + k2k3(y3 − x3)2 + k2k3k4(y4 − x4)2

so k2 = k3 = 1 and k4 = 0.
It means that motions:

x′1 = x1

x′2 = x2

x′3 = x3

x′4 = φ1x1 + φ2x2 + φ3x3 + x4

are all valid.
However, transformation:

x′1 = x1

x′2 = x2

x′3 = x3

x′4 = φ4x4

is not a motion. Although it preserved distance, it doesn’t preserve volume except φ4 = 1 or
−1. It is an example of angle scaling.

3.3 Spaces as Product of their Subspaces

Another way to define spaces is by product of their subspaces. It is necessary to be accurate
here. The geometric space isn’t only a structure of points. It is also the structure of all its
subspaces. It is mistake to think that having R1 is isomorphic to one–dimensional Euclidean
space E1, from R1×R1 = R2 results E1×E1 = E2 (using specification notation, {0}×{0} = {0,
1}). The problem is the product doesn’t define way to measure the angle between multiplied
subspaces. It can be defined in several ways, for example, {0, 0} or {0,−1}.

The situation is even worse when multiplied subspaces with different specification Xm and
Y n. One–dimensional images can be constructed in two ways: X1×Y 0 (isomorphic to X1) and
X0 × Y 1 (isomorphic to Y 1). And if X1 and Y 1 have different specifications, these two one–
dimensional lines aren’t congruent. For example, if somebody wants to construct geometry on
a cylinder, first thing he or she thinks of is S1 × E1 ({1} × {0}), where S1 is one–dimensional
elliptic space. In this case some lines are circles, some are lines and others are right and left
helices, that may not intersect, intersect in one point or intersect in infinity of points. As an
example of complete geometry on a cylinder you can take the space with specification {1, 0}.

Additionally, one should not consider that if from algebraic point of view E1 is isomorphic
to H1 (one–dimensional hyperbolic space), then constructions like H2 × E1 ({−1, 1} × {0})
and H2 × H1 ({−1, 1} × {−1}) are also isomorphic. From geometric point of view, E1 is
scalable, while H1 is not (the mutual departure of points is possible, however it can’t be linear).
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In contrast, it is possible to construct spaces with specifications {−1, 1, 0} and {−1, 1,−1},
which differ one from another by the fact that in first one on a twodimensional plane doesn’t
containing some point there is the only point that isn’t connectable with it, and for the second
space the number of such a points is infinity.
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