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The total energy of vacuum fluctuations of electron-positron and electromagnetic fields in quantum
electrodynamics is examined and is proven to vanish if the value of the “bare” electron charge is
chosen in a proper way. The “bare” charge value calculated in this work is in a qualitative agreement
with the independently obtained one from the solution of the “physical electron” problem in [1].
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I. INTRODUCTION

The quantum electrodynamics (QED) nowadays can be considered without any doubts as a part of the general
gauge theory [2]. At the same time QED as an isolated system remains the most successful quantum field model that
allows one to calculate the observable characteristics of the electromagnetic processes with the unique accuracy using
only two parameters - the mass m and the charge e of the “physical” electron [3–5]. However, there are two “dark
spots” in the theoretical construction of QED which do not permit to consider this model as the mathematically
perfect theory [6, §81], [7].

One of them is referred to the renormalization procedure where the connection between characteristics of the “bare”
electron with the mass m0 and the charge e0 and the parameters m and e of the “physical” one is defined by the
divergent integrals. The second one is the infinite vacuum energy of both electron-positron and electromagnetic fields
which is considered as the zero point energy. In spite of its infinite value the vacuum energy does not effect the
transition amplitudes of the quantum electrodynamical processes, nevertheless, it is revealed in the Casimir effect [8]
(see, however, [9]).

In a series of our publications [1, 10, 11] was shown that it is possible to renormalize a mass and a charge with
the finite values and the connection between characteristics of the “bare” and the “physical” electron is defined by the
formulas in Ref. [1]:

α0 =
a20
α

≈ 12.47

α
≈ 1708; α0 =

e20
4π

; α =
e2

4π
;

m0 = m
2|a0|
Tα

≈ 9.43

α
m ≈ 1292m. (1)

Here α is the observable fine structure constant, a0, T are the constants which are calculated numerically from the
equations that define one-particle excitation of the electron-positron field in QED and ~ = c = 1. It was also shown
that the perturbation theory built in the physical value of the parameter α corresponds to the strong coupling series
in α−1

0 .

In the present paper the ground state (vacuum) energy E0(α0) of the QED Hamiltonian is calculated and shown
to vanish when the coupling constant α0 equals to α̃0 (E0(α̃0) = 0). The value α̃0 ≫ 1 which we obtained is in a
qualitative agreement with the coupling constant in equation (1).
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II. ONE-PARTICLE EXCITATION IN QED

Let us consider the QED Hamiltonian in the Coulomb gauge [5]:

Ĥ =

∫
dr⃗Ĥ(r⃗) =

∫
dr⃗{ψ̂+(r⃗)[α⃗(ˆ⃗p− e0

ˆ⃗
A(r⃗)) + βm0]ψ̂(r⃗)+

+
∑
k⃗λ

ω(k⃗)(c+
k⃗λ
ck⃗λ +

1

2
) +

α0

2

∫
dr⃗′

ρ̂(r⃗)ρ̂(r⃗′)

|r⃗ − r⃗′|
}; (2)

ρ̂(r⃗) =
1

2
[ψ̂+(r⃗)ψ̂(r⃗)− ψ̂(r⃗)ψ̂+(r⃗)].

The field operators are given in the Schrödinger representation, the operator of an electromagnetic field and the
spinor components of the electron-positron operators are defined in a standard way [3]:

ˆ⃗
A(r⃗)) =

∑
k⃗λ

e⃗(λ)√
2kV

[ck⃗λe
ik⃗r⃗ + c+

k⃗λ
e−k⃗r⃗];

ψ̂ν(r⃗, t) =
∑
s

∫
dp⃗

(2π)3/2
{ap⃗sup⃗sνeip⃗r⃗ + b+p⃗sv−p⃗−sνe

−ip⃗r⃗}, (3)

where V is the normalization volume.
Firstly we briefly revise our consideration of the one-particle excitation [1]. In the zero-order of the conventional

perturbation theory (PT) the one electron (1e) and one positron (1p) excitations are defined by the state vectors:

|Φ(PT )
1e >= a+p⃗s|0; 0; 0 >; |Φ(PT )

1p >= b+p⃗s|0; 0; 0 >, (4)

with |Φ0 >≡ |0; 0; 0 > being the vacuum state vector.
In our approach more complicated trial state vectors were used for a one-particle excitation. They were represented

by the wave packet corresponding to the “physical” electron or positron:

|Φ(0)
1 >=

∑
s

∫
dq⃗{Uq⃗sa

+
q⃗s + Vq⃗sb

+
q⃗s}|0; 0; 0 > . (5)

Here Uq⃗s and Vq⃗s are variational parameters. For the “physical” electron with the zero total momentum they should
satisfy the additional conditions:

< Φ
(0)
1 | ˆ⃗P |Φ(0)

1 >=
∑
s

q⃗
[
|Uq⃗s|2 + |Vq⃗s|2

]
dq⃗ = P⃗ = 0;

< Φ
()
1 |Φ

(0)
1 >=

∑
s

[
|Uqs|2 + |Vqs|2

]
dq⃗ = 1,

< Φ
(0)
1 |Q̂|Φ(0)

1 >= e0
∑
s

[
|Vqs|2 − |Uqs|2

]
dq⃗ = e. (6)

where e is the “physical” electron charge.
Then we have calculated the one-particle excitation energy, defined as:

E1(0) ≃ E
(0)
1 (Uqs;Vqs)− E0 =< Φ

(0)
1 |Ĥ|Φ(0)

1 > − < Φ0|Ĥ|Φ0 >, (7)

where the averages are calculated with the total Hamiltonian (2).
The functions Uqs;Vqs were found as solutions of the variational equations:

∂E
(0)
1 (Uqs;Vqs)

∂Uqs
=
∂E

(0)
1 (Uqs;Vqs)

∂Vqs
= 0 (8)

with the additional conditions (6).
Using the coordinate representation

Ψν(r⃗) =

∫
dq⃗

(2π)3/2

∑
s

Uqsuq⃗sνe
iq⃗r⃗; Ψc

ν(r⃗) =

∫
dq⃗

(2π)3/2

∑
s

V ∗
qsvq⃗sνe

iq⃗r⃗, (9)
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we have found

E1(0) =

∫
dr⃗{Ψ+(r⃗)[(−iα⃗∇⃗+ βm0) +

1

2
φ(r⃗)]Ψ(r⃗)

−Ψ+c(r⃗)[(−iα⃗∇⃗+ βm0) +
1

2
e0φ(r⃗)]Ψ

c(r⃗);∫
dr⃗[Ψ+(r⃗)Ψ(r⃗) + Ψ+c(r⃗′)Ψc(r⃗′)] = 1; (10)

φ(r⃗) = α0

∫
dr⃗′

|r⃗ − r⃗′|
[Ψ+(r⃗′)Ψ(r⃗′)−Ψ+c(r⃗′)Ψc(r⃗′)]. (11)

The extremum of this functional for the state with the orbital momentum l = 0 has led to the system of equations
in the dimensionless variables and functions:

x = rm0; E = ϵm0; e0φ(r) = m0ϕ(x);
e20
4π

= α0;

u(x)
√
m0 = rg(r); v(x)

√
m0 = rf(r); u1(x)

√
m0 = rg1(r); v1(x)

√
m0 = rf1(r). (12)

du

dx
− 1

x
u− (1− ϕ(x))v = 0;

dv

dx
+

1

x
v − (1 + ϕ(x))u = 0;

du1
dx

+
1

x
u1 − (1 + ϕ(x))v1 = 0;

dv1
dx

− 1

x
v1 − ( 1− ϕ(x))u1 = 0;

ϕ(x) = α0[

∫ ∞

x

dy
ρ(y)

y
+

1

x

∫ x

0

dyρ(y)];

ρ(x) = [u2(x) + v2(x)− u21(x)− v21(x)]. (13)

A solution of this equations exists when the following conditions are fulfilled:

a = α0
1− C

1 + C
= a0 ≈ −3.531...

∫ ∞

0

dx(u2 + v2) =
1

1 + C
;

∫ ∞

0

dx(u21 + v21) =
C

1 + C
. (14)

Next by exploiting the connection (6) between the “bare” and the “physical” charges, the relation (1) between the
“bare” coupling constant α0 and the observed value of the fine structure constant α has been obtained.

When the analogous calculations have been performed for the state corresponding to the “physical” electron with
the total momentum P⃗ the spectrum of the one-particle excitations has been found [1]:

E1(P ) =
√
P 2 +m2; m =

m0αT

|a0|
. (15)

III. VACUUM ENERGY IN QED

In this section we will apply the same approach to the calculation of the vacuum energy E0, with the trial state
vector |Φ0 >≡ |0; 0; 0 >≡ |0 >:

E0(α0) =< 0|
∫
dr⃗Ĥ(r⃗)|0 > . (16)

By using the definition of the Hamiltonian (2) in equation (16) three terms are obtained [5]:
1) The zero energy of the Dirac field:

< 0|ĤD|0 >= −2
∑
p⃗

√
p2 +m2

0 = −2
V

(2π)3

∫ √
p2 +m2

0dp⃗; (17)

2) The vacuum energy of an electromagnetic field:

< 0|ĤE |0 >=
∑
k⃗λ

ω(k⃗)
1

2
=

V

(2π)3

∫
dk⃗ k; (18)
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3) The vacuum energy of the Coulomb field:

< 0|ĤC |0 >=
α0

2

∫
dr⃗dr⃗′

|r⃗ − r⃗′|
< 0|ρ(r⃗)ρ(r⃗′)|0 > . (19)

It is important that among these three terms one is negative and the other two are positive, while all of them are
equal to infinity. From a mathematical perspective we deal with the indefinite limit for E0. In order to investigate this
limit let us formally introduce a spherically symmetrical regularizing function in the integrand for the integration in
a momentum space: ∫

dp⃗⇒
∫
dp⃗f

( p
L

)
; f(0) = 1; f(∞) = 0, (20)

with L as the regularization parameter (L→ ∞).
Consequently we can rewrite the Dirac (17) and the electromagnetic (18) energies as

< 0|ĤD|0 >= −2
V

(2π)3

∫
dp⃗f

( p
L

)√
p2 +m2

0 = −2
V

(2π)3
L4

∫
du⃗f(u)

√
u2 +

m2
0

L2
, (21)

< 0|ĤE |0 >=
V

(2π)3
L4

∫
du⃗f(u)u, (22)

and the last term can be transformed into the momentum space:

< 0|ĤC |0 > = 2α0

∫ ∫
dr⃗dr⃗′

∫
dq⃗

2π2q2

∫ ∫
dp⃗dp⃗′

(2π)6
f
( p
L

)
f

(
p′

L

)
ei(p⃗+p⃗′+q⃗)(r⃗−r⃗′)

= 2α0V

∫
dq⃗

2π2q2

∫ ∫
dp⃗dp⃗′

(2π)3
f
( p
L

)
f

(
p′

L

)
δ(p⃗+ p⃗′ + q⃗)

= 2α0V

∫
dq⃗

2π2q2

∫
dp⃗

(2π)3
f
( p
L

)
f

(
|p⃗+ q⃗|
L

)
= 2α0V L

4

∫
du⃗

2π2u2

∫
dv⃗

(2π)3
f(v)f(|v⃗ + u⃗|), (23)

where u⃗ and v⃗ are the dimensionless variables.
Therefore, it is possible to turn the vacuum energy into zero if the “bare” coupling constant is chosen as the solution

of the equation:

α0(
m0

L
) = 2π2

∫
du⃗f(u)[2

√
u2 +m2

0/L
2 − u]∫

du⃗
u2

∫
dv⃗f(v)f(|v⃗ + u⃗|)

≈ α̃0 +O

[
m2

0

L2

]
;

L→ ∞, α̃0 = π2

∫
du⃗f(u)u∫

du⃗
u2

∫
dv⃗f(v)f(|v⃗ + u⃗|)

≡ I[f ]. (24)

IV. CALCULATION OF α̃0.

A concrete form of the dimensionless regularizing (cut-off) function with the boundary condition (20) is still not
specified. Therefore, we suggest to select this function such that the value of α̃0 in (24) depends on its form in the
least possible way. The most general form of f is a series with N indefinite coefficients:

f(u) = e−u2
N∑
l=0

Clu
l; C0 = 1. (25)
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Insertion of (25) into equation (24) and integration over the angular coordinates yields for α̃0:∫
du⃗f(u)u = 4π

∫ ∞

0

duf(u)u3 ≡ 4πJ1;∫
du⃗

u2

∫
dv⃗f(v)f(|v⃗ + u⃗|) =

∫
du⃗

(u⃗− v⃗)2

∫
dv⃗f(v)f(u)

= 4π2

∫ ∞

0

du

∫ ∞

0

dvuvf(v)f(u) ln
(u+ v)2

(u− v)2
≡ 4π2J2;

α̃0 = π
J1
J2
. (26)

Let us now define two sets of integrals: the vector set

Il =

∫ ∞

0

due−u2

ul+3; (27)

and the tensor set

Mk,r =

∫ ∞

0

du

∫ ∞

0

dvuve−u2−v2

ukvr ln
(u+ v)2

(u− v)2 + δ2
; (28)

where the indices l, k and r run the values 0, 1, ...N .
By using the integrals (27) and (28) the coupling constant α̃0 can be rewritten as:

α̃0 = π
I0 +A

M0,0 + 2A1 +B

A =
N∑
l ̸=0

ClIl; A1 =
N∑
l ̸=0

ClM0,l; B =
N∑

k ̸=0

N∑
r ̸=0

Mk,rCkCr. (29)

As we stated above the value of α̃0 must depend as least as possible on the form of f . This gives the additional
conditions on the coefficients Cl:

∂α̃0

∂Cl
= 0; l ̸= 0,

Il(M0, + 2A1 +B) = 2(I0 +A)(M0,l +
∑
k ̸=0

Ml,kCk). (30)

The solution of the system of equations (30) can be written in the general form as:

Cl = K

N∑
k ̸=0

(M−1)l,kIk −
N∑

k ̸=0

(M−1)l,kM0,k; K =
(M0,0 + 2A1 +B)

2(I0 +A)
. (31)

These solutions will be consistent if the coefficients A,A1, B in equation (29) are also determined in the same way.
Plugging equation (31) into (29) one obtains

A = K
∑
k ̸=0

∑
l ̸=0

Il(M
−1)l,kIk −

∑
k ̸=0

∑
l ̸=0

Il(M
−1)l,kM0,k ≡ KT − T1;

A1 = K
∑
l ̸=0

∑
l ̸=0

M0,l(M
−1)l,kIk −

∑
l ̸=0

∑
l ̸=0

M0,l(M
−1)l,kM0,k ≡ KT1 − T2;

B = K2
∑
k ̸=0

∑
r ̸=0

∑
l ̸=0

∑
m ̸=0

Mk,r(M
−1)l,kIl(M

−1)r,mIm−

− 2K
∑
r ̸=0

∑
l ̸=0

∑
m ̸=0

Mk,r(M
−1)l,kM0,l(M

−1)r,mIm+

+
∑
k ̸=0

∑
r ̸=0

∑
l ̸=0

∑
m ̸=0

Mk,r(M
−1)l,kM0,l(M

−1)r,mM0,m = K2T − 2KT1 + T2;

T2 =
∑
k ̸=0

∑
l ̸=0

M0,k(M
−1)l,kM0,l. (32)
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Then equation (32) leads us to the system of algebraic equations

2(A+ T1)(I0 +A)− [(M0,0 + 2A1 +B)]T = 0;

(A+ T1)T1 − (A1 + T2)T = 0;

(B − T2)T − (A+ T1)
2 + (A1 + T2)T = BT − (A+ T1)

2 +A1T = 0. (33)

Next, we introduce a new unknown variable x as (A + T1) = x, for which the quadratic equation is obtained and
can be easily solved:

x2 + 2x(I0 − T1)− (M0,0 − T2)T = 0

x1,2 = −(I0 − T1)±
√
(I0 − T1)2 + (M0,0 − T2)T . (34)

Returning to the old variables we obtain the unknowns A, A1 and B

A = x− T1; A1 = −T2 +
xT1
T

; B =
x2

T
+ T2 −

xT1
T
. (35)

Consequently this brings us to the equation for the determination of α̃0:

α̃0 = π
I0 +A

M0,0 + 2A1 +B
(36)

V. NUMERICAL RESULTS AND DISCUSSION

It is evident that the numerical value α̃0 depends on the number N in the series (25) which defines the dimension
of the matrices in (32). We have found numerically that for the fixed N the first root of equation (34) corresponds to
the minimal value α̃0 and the second to the maximal α̃0. Both values become closer to each other when N increases.
It was proved that the positive solution α̃0 > 0 could be found for N ≤ 12 and the maximal value of α̃0 corresponds
to N = 12. In this case the following values were calculated:

I0 = 0.5000; M0 = 0.768306; T = 29.1837; T1 = 0.500496; T2 = 0.768195;

α̃0 ≈ 239.21. (37)

One can see that the condition α̃0 ≫ 1 is in a qualitative agreement with the value α0 from (1). There is no surprise
that these parameters do not coincide exactly. In the present analysis the vacuum energy was calculated for the only
one fermion and the one boson fields referred to QED. Let us suppose that there is an additional set of quantum fields,
which includes N (c)

F charged and N
(0)
F neutral fermion fields with degeneracies g(c)F and g

(0)
F respectively. Analogous

values N (c)
B , g

(c)
B , N (0)

B , g
(0)
B could be defined for the charged and neutral boson fields. If the vacuum energy of all these

fields are taken into account by the same way as in the QED case the value α̃0 can be recalculated as follows:

α̃0 ⇒ α̃0
1 + g

(c)
F N

(c)
F + g

(0)
F N

(0)
F − 1/2(g

(c)
B N

(c)
B + g

(0)
B N

(0)
B )

1 + 1/4([g
(c)
F ]2N

(c)
F + [g

(c)
B ]2N

(c)
B )

. (38)

For example, if one includes the contribution of the vacuum energy from neutrino (νe) the value (37) of α̃0 changes
to

α̃0 ≈ 717.63, (39)
which is much closer to (1).

Concluding, we have shown that the two independent ways of the definition of the “bare” coupling constant between
the electromagnetic and the matter fields are qualitatively agree with each other, that can be considered as the basis
for further analysis of this problem.
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