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Abstract

A new modified model of nonlinear arcsin-electrodynamics with
two parameters is suggested and analyzed. The effect of vacuum
birefringence takes place when the external constant magnetic field
is present. We calculate indices of refraction for two perpendicular
polarizations of electromagnetic waves and estimate the parameter γ
from the Biréfringence Magnétique du Vide (BMV) experiment. It is
shown that the electric field of a point-like charge is finite at the origin.
We calculate the finite static electric energy of point-like particles and
demonstrate that the electron mass can have the pure electromagnetic
nature. The canonical and symmetrical Belinfante energy-momentum
tensors and dilatation current are found. We show that the dilatation
symmetry and dual symmetry are broken in the model suggested.

1 Introduction

In Maxwell’s electrodynamics a point-like charge possesses an infinite electro-
magnetic energy but in Born-Infeld (BI) electrodynamics [1], [2], [3], where
there is a new parameter with the dimension of the length, that problem of
singularity is solved. In BI electrodynamics the dimensional parameter gives
the maximum of the electric fields. In addition, non-linear electrodynamics
may give a finite electromagnetic energy of a charged point-like particle. As
a result, in such models the electron mass can have pure electromagnetic
nature. It is known that in QED one-loop quantum corrections contribute
to classical electrodynamics and give non-linear terms in the Lagrangian [4],
[5], [6]. Different models of non-linear electrodynamics were investigated in
[7], [8], [9], [10] and [11]. The non-linear effects should be taken into account
for strong electromagnetic fields.

The structure of the paper is as follows. In section 2, we propose the La-
grangian of the new model of nonlinear electrodynamics. The field equations
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are written in the form of Maxwell’s equations where the electric permit-
tivity εij and magnetic permeability µij tensors depend on electromagnetic
fields. In section 3 we show that the electric field of a point-like charge is not
singular at the origin and have the finite value. The phenomenon of vacuum
birefringence is investigated in section 4 and we estimate the parameter γ
from BMV experiment. In section 5 we obtain the canonical and symmet-
rical Belinfante energy-momentum tensors, the dilatation current, and its
non-zero divergence. The finite static electric energy of point-like particles is
calculated and we demonstrate that the electron mass can be treated as the
pure electromagnetic energy. We discuss the result obtained in section 6.

The Heaviside-Lorentz system with h̄ = c = ε0 = µ0 = 1 and Euclidian
metric are used. Greek letters run from 1 to 4 and Latin letters run from 1
to 3.

2 Field equations of the model

We suggest nonlinear electrodynamics with the Lagrangian density

L = − 1

β
arcsin

(
βF − βγ

2
G2

)
, (1)

where β, γ are dimensional parameters (βF , βγG2 are dimensionless). The
Lorentz-invariants are defined by F = (1/4)F 2

µν = (B2−E2)/2, G = (1/4)FµνF̃µν =

E ·B, and Fµν = ∂µAν − ∂νAµ is the field strength, F̃µν = (1/2)εµναβFαβ is
a dual tensor (ε1234 = −i) and Aµ is the 4-vector-potential. The non-linear
model of electrodynamics introduced can be considered as an effective model.
At weak electromagnetic fields the model based on the Lagrangian density (1)
approaches to classical electrodynamics, L ≃ −F , and the correspondence
principle takes place [12]. The variables β1/4, γ1/4 possess the dimension of
the length and can be considered as fundamental constants in the model.

Euler-Lagrange equations lead to the equations of motion

∂µ

 Fµν − γGF̃µν√
1−

(
βF − βγ

2
G2
)2
 = 0. (2)
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The electric displacement field, D = ∂L/∂E (Ej = iFj4), is given by

D =
1

Π
(E+ γGB) , Π =

√√√√1−
(
βF − βγ

2
G2

)2

. (3)

Defining Di = εijEj, we obtain the electric permittivity tensor εij:

εij =
1

Π
(δij + γBiBj) . (4)

The magnetic field can be found from the relation H = −∂L/∂B (Bj =
(1/2)εjikFik, ε123 = 1),

H =
1

Π
(B− γGE) . (5)

The magnetic induction field is Bi = µijHj, and we find the inverse magnetic
permeability tensor (µ−1)ij:

(µ−1)ij =
1

Π
(δij − γEiEj) . (6)

Equations of motion (2) may be written, with the help of Eqs. (3),(5), in the
form of the first pair of the Maxwell equations

∇ ·D = 0,
∂D

∂t
−∇×H = 0. (7)

The second pair of Maxwell’s equation follows from the Bianchi identity
∂µF̃µν = 0, and are given by

∇ ·B = 0,
∂B

∂t
+∇× E = 0. (8)

Eqs. (7),(8) are non-linear Maxwell equations because εij and µij depend on
the electromagnetic fields E and B. From Eqs. (3),(5) we obtain the relation

D ·H =
E ·B
Π2

(
1 + 2γF − γ2G2

)
. (9)

The dual symmetry is broken in this model because D ·H ̸= E · B [13]. It
should be noted that BI electrodynamics is dual symmetrical but in general-
ized BI electrodynamics [14] the dual symmetry is broken as well as in QED
due to one loop quantum corrections.
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3 The field of the point-like charged particles

From Maxwell’s equation (7) in the presence of the point-like charge source,
we obtain the equation

∇ ·D0 = eδ(r) (10)

having the solution

D0 =
e

4πr3
r. (11)

Eq. (11) with the help of Eq. (4), and at B = 0, becomes

E0

 1√
1− β2E4

0/4

 =
e

4πr2
. (12)

When r → 0 the solution to Eq.(12) is

E0 =

√
2

β
. (13)

Eq. (13) represents the maximum electric field at the origin of the charged
point-like particle. This attribute is similar to BI electrodynamics, and is in
contrast to linear electrodynamics where the electric field strength possesses
the singularity. Let us to introduce unitless variables

x =
4πr2

e
√
β
, y =

√
β

2
E0. (14)

Eq. (12) using (14) becomes y4 + 2x2y2 − 1 = 0 with the real solution

y =
√√

x4 + 1− x2. (15)

From Eq. (15) we find the asymptotic value y → 1 at x → 0 (r → 0) that
is equal to Eq. (13). If x → ∞ (distance r approaches to infinity), y → 0.
Therefore, the electric field of a point-like charged particle at the origin is
finite and equals the value in Eq. (13).
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4 Vacuum birefringence

It is known that vacuum birefringence takes place in QED due to one-loop
quantum corrections [15], [16]. We note that in generalized BI electrody-
namics [14] there is the effect of birefringence. Here we consider the su-
perposition of the external constant and uniform magnetic induction field
B0 = B0(1, 0, 0) and the plane electromagnetic wave (e,b),

e = e0 exp [−i (ωt− kz)] , b = b0 exp [−i (ωt− kz)] (16)

propagating in z-direction. Let consider the strong magnetic induction field
B so that the resultant electromagnetic fields are given by E = e, B = b+B0.
We assume that amplitudes of the electromagnetic wave, e0, b0, are much less
than the magnetic induction field, e0, b0 ≪ B0. From Eq. (1) after linearizing
on fields (see [17]), we obtain the electric permittivity tensor and magnetic
permeability

εij =
1

µ
(δij + γB0iB0j) , µij = µδij, µ =

1√
1− β2B4

0/4
. (17)

When the polarization of the electromagnetic wave is parallel to external
magnetic field, e = e0(1, 0, 0), we find from Maxwell’s equations (7), (8) the
equation µε11ω

2 = k2, and the index of refraction is given by

n∥ =
√
µε11 =

√
1 + γB2

0 . (18)

If the polarization of the electromagnetic wave is perpendicular to external
induction magnetic field, e = e0(0, 1, 0), we have µε22ω

2 = k2. As a result,
the index of refraction is

n⊥ =
√
ε22µ = 1. (19)

The phase velocity depends on the polarization of the electromagnetic wave,
and the effect of vacuum birefringence holds. The speed of electromagnetic
wave is v = 1/n∥ ̸= 1 when the polarization of the electromagnetic wave is
parallel to external magnetic field, e0 ∥ B0. In the case e ⊥ B0, the speed of
the electromagnetic wave coincides with the speed of light, v = 1/n⊥ = 1.

According to the Cotton-Mouton (CM) effect [18] the coefficient kCM is
defined as

△nCM = n∥ − n⊥ = kCMB2
0 . (20)
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From Eqs. (18)-(20), using the approximation γB2
0 ≪ 1, we obtain

△nCM =
√
1 + γB2

0 − 1 ≈ γB2
0

2
, kCM ≈ 1

2
γ. (21)

The value kCM , found in the BMV experiment [19], for the magnetic induc-
tion field B0 = 6.5 T is gives by

kCM = (5.1± 6.2)× 10−21T−2. (22)

From Eqs. (21), (22), we evaluate the parameter of our model

γ ≈ 10−20T. (23)

It should be noted that the value of kCM calculated from QED is much smaller
than the experimental value (22) [19], kQCD

CM ≈ 4.0 × 10−24T−2. Therefore
the model of non-linear electrodynamics under consideration with two free
parameters are of interest.

5 The energy-momentum tensor and dilata-

tion current

The symmetrical Belinfante tensor, obtained from Eq. (1) with the help of
the method of [20], is

TB
µν = − 1

Π
Fνα

(
Fµα − γGF̃µα

)
− δµνL, (24)

where Π is given by Eq. (3). From Eq. (24) one finds the energy density

TB
44 =

1

Π

(
E2 − γG2

)
+

1

β
arcsin

(
βF − βγ

2
G2

)
. (25)

We obtain the trace of the energy-momentum tensor (24):

TB
µµ = − 4

Π

(
F − γG2

)
+

4

β
arcsin

(
βF − βγ

2
G2

)
. (26)

Because the trace of the energy-momentum tensor is not zero [20], one finds
the dilatation current

DB
µ = xαT

B
µα. (27)
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Then the divergence of dilatation current is given by

∂µD
B
µ = TB

µµ. (28)

So, the scale (dilatation) symmetry is broken as we have introduced the
dimensional parameters β, γ. The dilatation symmetry is also broken in BI
electrodynamics [14] but in classical electrodynamics the dilatation symmetry
is conserved.

5.1 Energy of the point-like charged particle

Now we calculate the total electric energy of charged point-like particle. In
the case of electrostatics (B = 0) the electric energy density (25) becomes

ρE = TB
44 =

E2√
1− β2E4

0/4
− 1

β
arcsin

(
βE2

2

)
. (29)

Defining the total energy E =
∫
ρEdV , and using (14), (15), the value β1/4E

is given by

β1/4E =
e3/2

4
√
π

∫ ∞

0


√
2(
√
x4 + 1− x2)
√
x

−
√
x arcsin

(√
x4 + 1− x2

) dx
≈ 0.071. (30)

Implying that the electron mass equals the electromagnetic energy of the
point-like charged particle, E = 0.51 MeV, we obtain the parameter l =
β1/4 = 27.6 fm. Thus, the old idea of the Abraham and Lorentz [21], [22],
[23], about the electromagnetic nature of the electron is realized here for the
model suggested.

6 Conclusion

We have proposed a new model of nonlinear electrodynamics possessing two
dimensional parameters β, γ. There is the effect of vacuum birefringence
if the external constant and uniform induction magnetic field is present. If
γ = 0 the phenomenon of vacuum birefringence vanishes. The value γ was
estimated from the data of BMV experiment, γ ≈ 10−20 T. We have calcu-
lated the indices of refraction for two polarizations of electromagnetic waves,
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parallel and perpendicular to the magnetic field so that phase velocities of
electromagnetic waves depend on polarizations. The canonical and symmet-
rical Belinfante energy-momentum tensors and dilatation current were found
and we show that the dilatation symmetry is violated. The scale symmetry
is broken as the dimensional parameters β, γ are introduced. The electric
field of a point-like charge is finite at the origin in the model considered.
We have calculated the finite electromagnetic energy of point-like charged
particles. For l ≡ β1/4 = 27.6 fm the electron mass equals the total electro-
magnetic energy and we can assume that the mass of the electron has a pure
electromagnetic nature.
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