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Pauli matrices and 2D electron gas.

J.F. Geurdes 1

Abstract

The Pauli matrices can be derived from the Boltzmann treatment of a two
dimensional electron gas generated from two different crystal structures. The
locally created electron gas in A and B wing of a Bell-type experiment enables
entangled classical currents. We argue for a micro Boltzmann distribution
interpretation of the EPR paradox.
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1. INTRODUCTION

Providing a physical theory for local hidden variables [1] is difficult. If,
however, a macroscopic (semi) classical treatment arrives at entanglement,
this treatment can model local hidden variables in the micro domain. In
this paper we will focus the attention on a two-dimensional electron gas.
The distribution of a two dimensional electron gas can be obtained from the
semiclassical Boltzmann electron transport theory.

1.1. Boltzmann transport

The Fermi-Dirac distribution of electrons in a two dimensional electron
gas without electric and magnetic fields is [2]

f0(k) =
1

1 + exp
[

E(k)−µ
kBT

] (1)

Here, k = (kx, ky) is the wave vector, kB is the Boltzmann constant, T the
absolute temperature and µ the chemical potential. If an electromagnetic
source is available the acceleration d

dt
v(k) of the electrons is influenced by

the Lorentz force.

d

dt
v(k) = −

e

m∗ (E(k) + v(k)×B(k)) (2)
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The acceleration is related to velocity in the wave vector ~

m∗

dk
dt

= ~

m∗
k̇. m∗

is the effective mass of the electron.

1.2. Current

The distribution f = f(k, t) now differs from equation (1). It is still
assumed that f(k, t) = f(k + k̇dt, t + dt). If the difference between f(k, t)
and f0(k) is denoted by g(k, t) the current can be approximated by

j(t) = −2

∫

d2k

(2π)2
ev(k)g(k, t) (3)

The 2 in equation (3) arises from electron spin (considered phenomenolog-
ically). Note k̇ 6= 0. The linear Boltzmann equation for g(k, t) is equal
to

g(k, t)

∆τ(k)
= (∇kf0(k)) ·

e

~
E(k) + (∇kg(k, t)) ·

e

~
v(k)×B(k) (4)

In a zero magnetic field or when ∇kg(k, t) ∼ v(k) + B(k) the linear Boltz-
mann equation can be solved by

g(k, t) = ∆τ(k)
e

~
(∇kf0(k)) ·E(k) (5)

∆τ(k) = τ(k) − t̄0 the relative relaxation time. In the general theory [2]
∇kf0 = ~

∂f0
∂E(k)

v(k) with

lim
T→0

∂f0
∂E(k)

= −δ (E − EF ) (6)

Because of non-zero velocities, (6) holds approximately [2]. The EF is the
Fermi energy. Given, j = σE the conductance 2× 2 matrix can be written

σ =
e2

2~π2

∫

d2k δ (E(k)− EF )∆τ(k)v(k)⊗ v(k) (7)

The tensor product ⊗ is: (x ⊗ y)i,j = xiyj for i, j = 1, 2 and x = (x1, x2)
similarly y = (y1, y2).
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2. PAULI MATRICES

Subsequently, the wave vector k is transformed with kx = k cos(ϕ) and
ky = k sin(ϕ). The Jacobian is k =

√

k2x + k2y. Hence

σ =
e2

2~π2

∫

kdk dϕ δ (E(k, ϕ)−EF )∆τ(k, ϕ)v(k, ϕ)⊗ v(k, ϕ) (8)

Note that, because k̇ 6= 0, we also see k̇ 6= 0 and/or ϕ̇ 6= 0. The next step is
to observe that E(k, ϕ) in (8) depends on the velocity v(k, ϕ) (see [2]). The
subsequent transformation is to write E = E(k, ϕ) = 1

2
m∗v2(k, ϕ) together

with φ = ϕ. For completeness, k = k(E, φ) and ϕ = ϕ(E, φ). We do not use
quadratic dispersion for E. The Jacobian for the transformation is

J =

∣

∣

∣

∣

∂k/∂E ∂k/∂φ
∂ϕ/∂E ∂ϕ/∂φ

∣

∣

∣

∣

(9)

With this particular transformation ∂ϕ/∂E = 0 and ∂ϕ/∂φ = 1. Let us take
radial kinetic energy only E = 1

2
m∗v2(k). Hence,

1 = m∗||v(k)||
∂||v(k)||

∂k

∂k

∂E
(10)

With ||.|| the Euclidean norm like e.g. in ||k|| = k =
√

k2x + k2y . Hence,
the Jacobian in (9) is J = w(E) = ∂k/∂E which, in k and ϕ, looks like

{m∗||v(k)||∂||v(k)||
∂k

}−1. Generally, the ||v(k, ϕ)|| > 0, despite T → 0. The
conductance in (8) now can be transformed into

σ =
e2

2~π2

∫ ∞

0

dE

∫ +π

−π

dφ δ (E −EF )∆τ
′(E, φ)v(E, φ)⊗ v(E, φ) (11)

with ∆τ ′(E, φ) = k(E, φ)∆τ(E, φ)w(E). Subsequent integration over E
(EF > 0) results into

σ =
e2

2~π2

∫ +π

−π

dφ ∆τ ′(EF , φ)v(EF , φ)⊗ v(EF , φ) (12)

The v generally depend on E and φ. The first step to the Pauli matrices for
(12) is to transform the velocity vector to an ’associated’ form: u(EF , φ) =
v(EF , φ)

√

∆τ ′(EF , φ). Note that even when v is independent of φ the u can
vary with φ because of φ dependece in the relaxation time. u can be real or
imaginary. We have ∆τ ′(E, φ) = k(E, φ)∆τ(E, φ)w(E), with real positive
or negative, relative relaxation time ∆τ(E, φ) and, real positive or negative,
Jacobian w(E). Let us specify ui(EF , φ) for i = 1, 2 and derive the first Pauli
matrix.
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2.1. Pauli’s σx for conductance

Suppose, the Heaviside H is defined by, H(x) = 1 for all x ≥ 0 and
H(x) = 0 for all x < 0. Moreover, suppose α ∈ (0, π

4
). Then for φ ∈ (−α, α),

δux,1 = u1(EF , φ) = κ(EF )
√

1
2α

√

tan(φ)H(φ+ α)H(α− φ)

δux,2 = u2(EF , φ) = κ(EF )
√

1
2α

√

cot(φ)H(φ+ α)H(α− φ)
(13)

Note that in this definition, suppressing the EF dependence notation for
the moment, we see u2i (φ) < 0 when φ < 0 and u2i (φ) ≥ 0 when φ ≥
0. The indication δux,i refers to the choice of relatively small changes in
associated velocity for the Pauli matrix σx. For a given φ > 0 and φ ∈
(0, α) we assume in approximation the conservation of total kinetic energy
for ’differential associated velocities’ δux(E, φ) = u(E, φ). I.e. the changes
in kinetic energies when electron and hole are created occur ’balanced’ in the
u.

1

2
m∗||u(E, φ)||2 +

1

2
m∗||u(E,−φ)||2 = 0 (14)

It is believed that electron escape from a crystal structure leaving behind a
hole can be pictured in equation (13). Note that equation (14) is valid in u

not in v terms. Integrating for u21 for instance, using (12) then (punching
φ = 0) gives

σ1,1 =
1

2α

e2

2~π2
−

∫ +π

−π

dφ κ2(EF ) tan(φ)H(φ+ α)H(α− φ) (15)

Or, equally

σ1,1 =
κ2(EF )

2α

e2

2~π2
−

∫ +α

−α

dφ tan(φ) = −C [log | cos(φ)|]+α
−α (16)

with C = κ2(EF )
2α

e2

2~π2 . From (16) follows σ1,1 = −C{log | cos(α)|−log | cos(−α)|}.
Hence, σ1,1 = 0. A similar argument applies to σ2,2 where the integration
shows that σ2,2 = −C{log | sin(α)| − log | sin(−α)|} = 0. If we subsequently
turn to σ1,2 = σ2,1 then we see

σ1,2 =
κ2(EF )

2α

e2

2~π2
−

∫ +α

−α

dφ
√

tan(φ)
√

cot(φ) =
e2κ2(EF )

2~π2
(17)
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Hence, with κ(EF ) = π
√
2~
e

the Pauli matrix σx can be obtained for the
conductance matrix. However, because of infinitesimal changes in ’associated
velocity’ (13), the factor is maintained. Hence,

Σx =
e2κ2(EF )

2~π2

(

0 1
1 0

)

(18)

κ sufficiently small. Note that ’going through a singularity’ for the cot inte-
gral provides a zero result of the integral when the φ = 0 is ’cut out’ of the
integration by left-hand −ǫ and right-hand ǫ for ǫ → 0+. This is so because
| sin(−ǫ)| equals | sin(ǫ)|. Hence, the integral of both the tan as well as the
cot containing associated ’velocities’ in equation (13) can be given by the
ǫ → 0+ sum of

∫ −ǫ

−π
and

∫ π

ǫ
integration operations and is written −

∫ +π

−π
. The

Heavisides in (13) convert the integrals into −
∫ +α

−α
.

2.2. σy conductance

The σy Pauli matrix can be similarly derived for the conductance. Let us
define the ’associated velocity’ entries

δuy,1 = u1(EF , φ) = λ(EF ) cos(φ/2)H(φ− β)H(π
2
− φ)

δuy,2 = u2(EF , φ) = i λ(EF ) sin(φ/2)H(φ− π
2
)H(π − β − φ)

(19)

with β ∈ (0, α). In the first place we may note that, dissimilar to the σx case
in secion - 2.1, the canceling of ’associated’ kinetic energy terms occur in
a non-symmetrical way: i.e. 1

2
m∗||u(φ)||2 + 1

2
m∗||u(φ ′)||2 = 0 where (φ ′, φ)

solves cos2(φ)−sin2(φ ′) = 0 with φ ∈ (β, π
2
) and φ ′ ∈ (π

2
, π−β). If the aim is

to explain the geometric asymmetry in electron - hole creation geometry then
perhaps the crystal structure, i.e. phonon hindrance can be held account-
able for the asymmetry. Subsequently, the integral for u1(EF , φ)u2(EF , φ)
vanishes because the domains are disjoint. For the σ1,1 term we see

σ1,1 =
e2λ2(EF )

2~π2

∫ π/2

β

cos2(φ/2) dφ (20)

Because cos2(φ/2) = 1
2
(1 + cos(φ)) it follows that

σ1,1 =
e2λ2(EF )

4~π2

{

π
2
− β + 1− sin(β)

}

. Similarly for σ2,2 we may derive

σ2,2 = −
e2λ2(EF )

2~π2

∫ π−β

π/2

sin2(φ/2) dφ (21)

5



Because sin2(φ/2) = 1
2
(1− cos(φ)) it follows that

σ2,2 = −e2λ2(EF )
4~π2

{

π
2
− β + 1− sin(β)

}

. Hence, when we take λ(EF ) and
κ(EF ) such that

κ2(EF ) =
λ2(EF )

2

{π

2
− β + 1− sin(β)

}

(22)

then we find

Σy =
e2κ2(EF )

2~π2

(

1 0
0 −1

)

(23)

3. ENTANGLED CURRENTS

Suppose in experiment, similar to Bell’s [3], [4] we have a distant A and
B wing where, at both sides, a localized but identical electric field with vecor

ET =
2~π2

e2κ2(EF )
ÊT =

2~π2

e2κ2(EF )
(E1, E2) (24)

reigns. Furthermore we insist that Ê2 = E2
1 + E2

2 = 1. If we take the two
’crystal structures’ we talked about in the previous two sections and generate
electron-hole pairs, then at first instance, electrons in the 2D gas from the
horizontal Σx related crystal and from the vertical Σy related crystal co-occur
in the anglular interval (β, α). In this area per wing one can ’mix the two
conductances’ Σx and Σy with a unit parameter vector â = (a1, a2) and/or

b̂ = (b1, b2). E.g. ΣA(a1, a2) = a1Σx + a2Σy. The mixed current at A is then
equal to jA = ΣA(a1, a2)E. Similarly, one can define a ΣB(b1, b2) such that
jB = ΣB(b1, b2)E. Note that we can take a21×100% to indicate the percentage
at the A wing of Σx-crystal electrons and similarly for the a22 × 100%. The
same thing can be supposed for the entries of the b vector. Furthermore, the
mixing percentages are transformed into angles. We suppose, a1 = cos(ψA)
and a2 = sin(ψA) together with b1 = cos(ψB), b2 = sin(ψB) and project the
ψ in an interval [γ,∆τ ] ⊂ (0, π

2
). Subsequently, we may note that because of

(24) and the expressions for Σx and Σy in resp. (18) and (23) the following
inner-product for jA and jB employs Pauli matrices as in a quantum corelation
(see e.g. [3]).

jTA jB = ÊT [cos(ψA)σx + sin(ψA)σy] [cos(ψB)σx + sin(ψB)σy] Ê (25)
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Note that, σT
x = σx and σT

y = σy together with σ2
x = σ2

y = 12×2. If we in

addition inspect e.g. the term cos(ψA) sin(ψB)Ê
TσxσyÊ it is noted that this

equals cos(ψA) sin(ψB)(E1, E2)

(

−E2

E1

)

= 0 Hence, the inner product of

the A and B wing current is jTA jB = cos(ψA −ψB). The inner product of the
two current vectors are entangled.

4. CONCLUSION

It was demonstrated that under classical local conditions, entangled mea-
surements can be simulated that commonly are thought only to occur in
non-local quantum theory. Let us summarize the experiment: The source
in a Bell-type experiment can be the cloning and subsequent sending in two
different directions of the electric field vector E. Two pairs of crystals are
employed to generate the mixing of conductances Σx and Σy, in the A and
conductances Σx and Σy, in the B wing. The electrons escape from the
crystal surfaces (Σx parallel x+ axis and Σy parallel y+ axis and x⊥y) and
locally mix in φ ∈ (β, α). If the current vectors that are created from the
’cloned’ electric fields vectors are transported to a measuring system O a
current-current entangled inner product jTA jB = a · b can be observed from
jA = [a1σx + a2σy]ÊA and jB = [b1σx + b2σy]ÊB. Hence, j

T
A jB can in princi-

ple violate the CHSH but note that the current vectors are created by local
means. The parameters a and b refer to mixing percentages of electrons with
φ ∈ (β, α): i.e. in the A wing a21 × 100% of the electrons from the Σx crystal
and a22 × 100% from the Σy crystal and similarly in the B wing. Perhaps
one would like to argue against entanglement in currents but the outcome in
the innerproduct jTA jB is the same as quantum mechanically. Entanglement
refers to something unobservable and obtains its meaning from its use [5]. Es-
sentially it is concluded from the experimental correlation. Unless we refered
unwittingly to macroscopic quantum electron gas, Bell’s correlation needs
not be nonlocal in its origin. It can be claimed that the structure laid down
here is the physics of locality and causality that Einstein had in mind. The
question then of course, similar to Madelung’s hydrodynamic interpreation
of qm [6], is: ’if referred to the microphysics domain, what does the distri-
bution in the Boltzmann equation (4) distribute’. On the mathematical side
the result is in accordance with [7], [8], [9], [10].

An additional point arises if we note that mathematically there is a con-
finement to a mixing interval φ ∈ (β, α), with β > 0. It can be that, macro-
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scopically, the mathematical structure does not violate the CHSH because
of the mixing angle restriction. This does not disqualify the mathematical
structure used for local hidden variable purposes but shows the difference of
macro vs micro Boltzmann distributions.
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