Principle of Conservation

Alejandro A. Torassa

Creative Commons Attribution 3.0 License (2013) Buenos Aires, Argentina atorassa@gmail.com

Abstract

In classical mechanics, this paper presents a new principle of conservation for frontal elastic collisions, which can be applied in any inertial reference frame.

Principle of Conservation

In an isolated system of *N* particles, the new principle of conservation for frontal elastic collisions, is given by:

$$\sum_{i=1}^{N} \frac{1}{2} m_i (\mathbf{r}_i \times \mathbf{v}_i)^2 = constant$$

where m_i is the mass of the *i*-th particle, \mathbf{r}_i is the position of the *i*-th particle, and \mathbf{v}_i is the velocity of the *i*-th particle.

Appendix

Angular Work

The angular work W_a done by a constant moment \mathbf{M}_a acting on a particle A, is given by:

$$W_a = \mathbf{M}_a \cdot (\mathbf{r}_a \times \mathbf{d}_a)$$

where \mathbf{r}_a is the position of particle A, \mathbf{d}_a is the displacement vector of particle A, and \mathbf{F}_a is the constant force acting on particle A $[\mathbf{M}_a = (\mathbf{r}_a \times \mathbf{F}_a)]$

Angular Kinetic Energy

The angular work done by the net moment acting on a particle A is equal to the variation of the angular kinetic energy of particle A.

$$W_a = \Delta \frac{1}{2} m_a (\mathbf{r}_a \times \mathbf{v}_a)^2$$

Therefore, if the net moment acting on particle A does no angular work then the angular kinetic energy of particle A remains constant.