Ervin Goldfain. On the Relationship between Hamiltonian Chaos and Classical Gravity


Natural Sciences / Physics / Mathematical Physics

Submitted on: Jun 04, 2022, 06:42:02

Description: It is known that Hamiltonian equations of motion for low-dimensional chaotic systems are typically formulated using fractional derivatives. The evolution of such systems is governed by the fractional diffusion equation, which describes self-similar and non-Gaussian processes with strong intermittencies. We confirm, in this context, that the dynamics of a Brownian particle driven by space-time dependent fluctuations evolves towards Hamiltonian chaos and fractional diffusion. The corresponding motion of the particle has a time-dependent and nowhere vanishing acceleration. Invoking the equivalence principle of general relativity leads to the conclusion that fractional diffusion is locally equivalent to a transient gravitational field. It is shown that gravity becomes renormalizable as NewtonâE™s constant converges towards a dimensionless quantity.

The Library of Congress (USA) reference page : http://lccn.loc.gov/cn2013300046.

To read the article posted on Intellectual Archive web site please click the link below.

On the relationship between Hamiltonian chaos and classical gravity.pdf



© Shiny World Corp., 2011-2024. All rights reserved. To reach us please send an e-mail to support@IntellectualArchive.com