Francisco-Javier Turiel. The Local Product Theorem for bihamiltonian structures
Natural Sciences / Mathematics / Geometry
Submitted on: May 08, 2012, 13:44:51
Description: In this work one proves that, around each point of a dense open set (regular points), a real analytic or holomorphic bihamiltonian structure decomposes into a product of a Kronecker bihamiltonian structure and a symplectic one if a necessary condition on the characteristic polynomial of the symplectic factor holds. Moreover we give an example of bihamiltonian structure for showing that this result does not extend to the $C^infty$-category. Thus a classical problem on the geometric theory of bihamiltonian structures is solved at almost every point.