I.L. Zhogin. One more fitting (d=5) of Supernovae red shifts


Natural Sciences / Physics / Relativity

Submitted on: Jun 18, 2012, 17:04:56

Description: Supernovae red shifts are fitted in a simple 5D model: the galaxies are assumed to be enclosed in a giant S^3-spherical shell which expands (ultra) relativistically in a (1+4)D Minkowski space. This model, as compared with the kinematical (1+3)D model of Prof Farley, goes in line with the Copernican principle: any galaxy observes the same isotropic distribution of distant supernovae, as well as the same Hubble plot of distance modulus mu vs red shift z. A good fit is obtained (no free parameters); it coincides with Farley's fit at low z, while shows some more luminosity at high z, leading to 1% decrease in the true distance modulus (and 50% increase in luminosity) at z~2. The model proposed can be also interpreted as a FLRW-like model with the scale factor a(t)=t/t_0; this could not be a solution of general relativity (5D GR is also unsuitable--it has no longitudinal polarization). However, there still exists the other theory (with D=5 and no singularities in solutions), the other game in the town, which seems to be able to do the job.

The Library of Congress (USA) reference page : http://lccn.loc.gov/cn2013300046.

To read the article posted on Intellectual Archive web site please click the link below.

I_L_Zhogin__One_more_fitting_of_Supernovae_red_shifts.pdf



© Shiny World Corp., 2011-2024. All rights reserved. To reach us please send an e-mail to support@IntellectualArchive.com