V.I.Chilin and G.B.Levitina. Derivations on ideals in commutative Aw*-algebras

Natural Sciences / Mathematics / Algebra

Submitted on: Jun 25, 2012, 11:18:49

Description: Let A be a commutative AW*-algebra, let S(A) be the *-algebra of all measurable operators affiliated with A, let I be an ideal in A, let s(I) be the support of the ideal I and let Y be a quasi-normed solid subspace in S(A). We show that any derivation from I intoY is always trivial. At the same time, there exist non-zero derivations from I into S(A), if and only if the Boolean algebra of all projections from s(I)A is not sigma-distributive.

The Library of Congress (USA) reference page : http://lccn.loc.gov/cn2013300046.

To read the article posted on Intellectual Archive web site please click the link below.


© Shiny World Corp., 2011-2024. All rights reserved. To reach us please send an e-mail to support@IntellectualArchive.com