V.I.Chilin and G.B.Levitina. Derivations on ideals in commutative Aw*-algebras
Natural Sciences / Mathematics / Algebra
Submitted on: Jun 25, 2012, 11:18:49
Description: Let A be a commutative AW*-algebra, let S(A) be the *-algebra of all measurable operators affiliated with A, let I be an ideal in A, let s(I) be the support of the ideal I and let Y be a quasi-normed solid subspace in S(A). We show that any derivation from I intoY is always trivial. At the same time, there exist non-zero derivations from I into S(A), if and only if the Boolean algebra of all projections from s(I)A is not sigma-distributive.