A. Soranzo, E. Epure. Simply Explicitly Invertible Approximations to 4 Decimals of Error Function and Normal Cumulative Distribution Function


Natural Sciences / Mathematics / Statistics

Submitted on: Jul 14, 2012, 11:09:40

Description: We improve the Modified Winitzki's Approximation of the error function $erf(x)cong sqrt{1-e^{-x^2frac{frac{4}{pi}+0.147x^2}{1+0.147x^2}}}$ which has error $|varepsilon (x)| < 1.25 cdot 10^{-4}$ $forall x ge 0$ till reaching 4 decimals of precision with $|varepsilon (x)| < 2.27 cdot 10^{-5}$; also reducing slightly the relative error. Old formula and ours are both explicitly invertible, essentially solving a biquadratic equation, after obvious substitutions. Then we derive approximations to 4 decimals of normal cumulative distribution function $Phi (x)$, of erfc$(x)$ and of the $Q$ function (or cPhi).

The Library of Congress (USA) reference page : http://lccn.loc.gov/cn2013300046.

To read the article posted on Intellectual Archive web site please click the link below.

Emanuela_Epure__Simply_Explicitly_Invertible_Approximations.pdf



© Shiny World Corp., 2011-2024. All rights reserved. To reach us please send an e-mail to support@IntellectualArchive.com