Description: We theoretically analyze the anisotropic magnetoresistance (AMR) effects of bcc Fe (+), fcc Co (+), fcc Ni (+), Fe$_4$N (-), and a half-metallic ferromagnet (-). The sign in each ( ) represents the sign of the AMR ratio observed experimentally. We here use the two-current model for a system consisting of a spin-polarized conduction state and localized d states with spin--orbit interaction. From the model, we first derive a general expression of the AMR ratio. The expression consists of a resistivity of the conduction state of the $sigma$ spin ($sigma=uparrow$ or $downarrow$), $rho_{s sigma}$, and resistivities due to s--d scattering processes from the conduction state to the localized d states. On the basis of this expression, we next find a relation between the sign of the AMR ratio and the s--d scattering process. In addition, we obtain expressions of the AMR ratios appropriate to the respective materials.