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Abstract

This paper explores a novel approach for the etraof
relevant information in speaker recognition taskehis
approach uses a principled information theoretiengwork -
the Information Bottleneck method (IB). In our apation,
the method compresses the acoustic data while rphege
mostly the relevant information for speaker idecdtion. This
paper focuses on a continuous version of the IB aoteth
known as the Gaussian Information Bottleneck (GB)is
version assumes that both the source and targetbles are
high dimensional multivariate Gaussian variableke TGIB
was applied in our work to the Super Vector (S\pelision
reduction conundrum. Experiments were conductedhen
male part of the NIST SRE 2005 corpora. The GIB
representation was compared to other dimensionctieeu
techniques and to a baseline system. In our expatsnthe
GIB outperformed the baseline system; achieving E/6.
Equal Error Rate (EER) compared to the 15.1% EER of a
baseline system.

Index Terms: Information Bottleneck method, Gaussian
Information Bottleneck, Speaker Recognition, Supertdie

1. Introduction

The field of speaker recognition has developed
significantly over the last few years with the ottuction of
the Super Vector (SV) method [1][2]. The SV apptoddfers
from the classical Gaussian Mixture Model - Unietrs
Background Model (UBM-GMM) [3] scheme by taking
advantage of the symmetry that exists betweerr#iginig and
testing speech segments. Instead of using thesétsonly for
training GMM distributions and the second set oridy
likelihood estimation, SVs are evaluated for boihdk of
segments, and the similarity measure is given bynametric
Euclidean distance in high-dimensional space.

SV speaker recognition systems set the UBM as fkialin
distribution for training GMMs. For each of theitimg and
testing segments a GMM is estimated using maximum a
posteriori (MAP) adaptation. The parameters froche@MM

are then utilized for creating the S\X() for that segment,
namely:
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whereW is the weight of the Gaussian H; is the mean of

the Gaussian in thej dimension, andaij is the standard

deviation of Gaussian in thej dimension.d is the feature
space dimension ang is the number of Gaussians in a
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mixture. Note that the SVs have a very high dimemgequal
to the products of the number of Guassians andithension
of the features space). Given two SVs, the Eudfid#iatance
between them is an estimation of the Kullback-Lexik{KL)

divergence between their original GMM distributiofig. In

state of the art GMM-Support Vector Machine (GMM{8)Y
systems [4], scores are given by the SVM, instdacsing the
distances (normalized using ZT-norm [5]) as donethis

paper.

Unfortunately, due to lack of training data andeirtall
variability, the estimation of SVs tends to be maate. It can
be described as if a certain amount of noise ie@dd the
correct SV. However, some level of noise reduciian be
achieved by using a procedure for reducing the dgioe of
the SVs [3][4][5]. In this paper, a new dimensi@duction
procedure is introduced, based on the GIB method¢chwh
enhances the relevant information about the spedketity,
while minimizing the overall information.

All speaker recognition systems described througliug
paper used the same acoustic features. 13 Meldrayu
cepstral coefficients (MFCC) and their first derivas,
estimated every 10ms with 25ms windows [9]. Thdavant
frames were selected by an energy based Voice iActiv
Detector (VAD). Ultimately, a feature time warpindO]
procedure was applied.

2. Methods

In this work the GIB method was applied to the speak
recognition SV models for the purpose of reducimg t
representation dimensionality. This section reviews
theoretical aspects of IB [11], its continuous aggtibn for
multivariate Gaussian variables [12], and our neuB G
solution for SV based speaker recognition.

2.1. Information Bottleneck

Each audio segment can be viewed as having two coemps,

X andY. X represents the acoustic characteristics of theaud
signal, whileY is a representation of the classification target,
in this case - the speaker identity. The amountetévant
information thatX contains orl is determined, in this method,
by Shannon's mutual information between the twéabes,

(X;Y) ” X Y) Iog( ) dxdy )

The goal of the IB is to find a compact represéoiadf X,
denoted here by the random variablethat on the one hand
preserves as much information as possible abowsgbaker's

identity, i.e.mTaX| (T ;Y) , and on the other hand is as

simple as possible mTinI(X;T). This procedure



generalizes the classical notionminimal sufficient statistics
for general random variables and Y. The tradeoff between
these two complementary criteria is obtained byoihicing a
positive Lagrange multipligg and optimizing the following

Lagrangian with respect to a stochastic map ¥om T,
T)=B1(T X))

argmin{1 (X @3)

p(tx)

This optimization is similar to the Rate-Distortidradeoff
equation in lossy compression [13]. However, in ifRecase
an emerged distortion measure results from therrimdtion
sufficiency criteria.

2.2. Gaussian | nfor mation Bottleneck

In the special case wheb¢ and Y are jointly multivariate
Gaussian distributions, the 1B optimization problenturned
into a generalized eigenvalue problem, as develdapdd?2].
The description of GIB starts with a few basic difims. For
two Gaussian random variable¥X and Y, let ZX and

Zydenote the covariance matrices respectively. Thesscr

and X ¥
and the conditional covariance, or canonical cati@h matrix
by Zx‘y , defined as follows:

covariance matrices of andY is denoted by> Xy

z“x\y = ZX - nyz;lzyx (4)

Solving the IB for general continuous distributionan be
complicated and involves an iterative solution. ldwer, for
the Gaussian case the information functions involvy these
matrices and an elegant analytical solution exlstshis case,
the optimal representatioh is a linear projection oK on a
subspace of eigenvectors of the conditional coxada

matrix 2 y y2x

weights are determined by the tradeoff paramgter
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whereA is the projection matrix fronXto T, T=AX. The left
eigenvectors are sorted according to their eigeregalin an
ascending order. The scalafs and the criticgh's, where the
number of dimensions of the projection increasexe a
determined by the eigenvalues and eigenvectorsllasvé:
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2.3. GIB for speaker recognition
The optimal projection according to the GIB algarith

consists of the eigenvectors of the mat&“y . In the

speaker recognition task, th¥ vectors are the GMM
supervectors of the voice segments (a 128*26 dirorabk
vector) and theY vectors are the GMM supervectors of the
speakers. The GMM supervector of a speaker wase &t the
average vector of all the acoustic segments madahbaly
speaker.
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Y, the GMM supervector of the!" speaker,
X the GMM supervector of thé segment of the" speaker,

N, the number of segments attributed todhepeaker.
It can be seen in the following equation that untiezse
special conditions the cross covariance matrEx;§,2yx are

both equal to the speaker covariance maIrig;.

X2y=2

Xy y>< SPS 1(nSIzlys |J
l l SP )
58

S |
whereSPis the number of speakers. By using the outcome of
the equation (8), the optimal projection equaticem che
simplified, yielding

I = (E, - EVE ) =
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Due to the scarcity of training data, a full coeaide matrix
cannot be estimated properly. To overcome this Iprotand
simplify the estimation, in the current experimeatdlock-
diagonal matrix was assumed [14]. This is equivaltn
assuming no correlations between the valueX afriginate
from different cepstral coefficients and no cortiela between
an MFCC and its derivative. Therefore, the size chdalock
was the number of Gaussians in the GMM. In addition
these experiments only 128 Gaussians were use@y finan
the 1024 or 2048 commonly used in speaker recagniti
systems.

3. Experiments

recognition experimentse wer
conducted in order to demonstrate the difference in
performance among the several dimension reduction
techniques. Three linear dimension reduction tephes were
compared: Principal Components Analysis (PCA), Glid a
Linear Discriminant Analysis (LDA). In each datasat
different technique was applied and a baseline raxeat was
conducted as well. All the experiments were conelliatsing
128 Gaussians per mixture. Given that the featpaeeswas a
26 dimensional space, the total dimension of eaghwas
26x128=3328. Each set was composed of several
experiments differentiated by the reduced dimensibrihe
SVs. The reduced dimension values that were usadnsgl
from no reduction at all to a dimension that waly @ansmall
fragment of the original one.

Several sets of speaker



3.1. Corpora

All the experiments were conducted on the male sedgsnof
the common task of the NIST SRE 2005 [15]. The bamkgd
model was estimated from the male training segmehthe
common task of the NIST SRE 2004. A total of abobd 2
segments from about 100 different speakers were fosethe
background training. As was mentioned earlierthia SV
approach there was a similarity between the trginamd
testing segments, each segment was processed imgla s
vector in a high dimensional space. In the same tivase was
a similarity betweerT -norm andZ -norm. All the segments
(training and testing) of the male data set ofdcbmmon task
in NIST SRE 2004 were used &snorm andZ -norm. There
were about 700 of those segments that were madaboyt
100 different speakers. These segments were useithein

evaluation of the three matricdX.,, X, X ) as well

Xy

3.2. Resaults

The results were compared according to two scesiatiee
point with the best performance and a point wite thw
dimension (26*30).
Detection Error Tradeoff (DET) curves[16] and EERaHle
1-2].
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Figure 1:Best Performance Scenario.
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Figure 2:Low Dimension Scenario.

Performance was evaluated using

Table 1Best Performance Scenario.

Algorithm Recognition Dimension
Performance
(EER)

Baseline 15.1 26*128
PCA 7.0 26*110
LDA 6.1 26*100
GIB 6.1 26*104

Table 2Low Dimension Scenario.

Algorithm Recognition
Performance (EER)
Baseline 15.1
PCA 16.2
LDA 7.3
GIB 7.3

Both LDA and GIB show an improvement over the clasdic
with or without PCA transformation. At their bestfmemance
point, there is no significant difference betweelB Gand
LDA- a fact that will be explained in the discussio

4. Discussion

According to the results, it seems that GIB is samtb LDA

in most performance. We will now show that thereais
theoretical equivalence between the two methodswel

(section 4.1). One major advantage for GIB thoughthie

ability to get an explicit expression for the infmation

residing in each of the eigenvectors, and visuadizi using a
graph called the information curve (section 4.2).

4.1. Theoretic Comparison

It was decided to elaborate on the comparison efsfreaker
recognition version of the GIB and the LDA methodedo
their convincing resemblance. Theoretical compassamong
the other techniques used, were already exploradolgy at el.

[71.
The LDA goal is to find the eigenvectors of the rxatS,'S,

that have the highest eigenvalueiiB is the between-class

scatter matrix, and is defined aEy. SW is the within-class

scatter matrix and we will now prove that it is ebio Zx‘y
1 SP 1 ng
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Thus, the optimal projection according to the LDI§aaithm
is the eigenvectors of the matEg:‘lyZy with the highest

eigenvalues.

In the speaker recognition version of the GIBthe speaker
vector) is defined as the average of all the seggnehthe
speaker. It was shown in equation (9) that in the@ssion of



GIB, the goal is to find the eigenvectors of the nrat

1
ZX‘yZX =1-Z ZX that have themallesteigenvalues.

Table 3LDA and GIB matrices.

Algorithm Matrix
LDA
wZ V=Av
GIB -1_ =T
@ ZXWZX =yw

An eigenvector and its corresponding eigenvalughefLDA
matrix are denoted bj?,l and those of the GIB matrix are

denoted by, Y.

GIB: &'z,
,1 -
ZXZX‘ya)—
S = AV

Sy Z,,) V=47 (11)
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LDA:

By placing the eigenvectov of the LDA algorithm in the
GIB equation, we get:

,l =
2z, Zx‘yv =
. 1 (12)
:Zx Z:><\y (Zx\y x) = 141 v
Therefore any eigenvector of the LDA matrix, isoalan

eigenvector of the GIB matrix, with some other eiggues.
However, since there is a monotonously decreasiagping

A= 0+ A"
greatest for LDA, is exactly the same as choodirgsimallest

in GIB. Therefore, both methods will discard of ekathe
same eigenvectors.

4.2. Information Curve

Informatlon Curve
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Figure 3:Speaker Recognition Information curve. n is
the number of eigenvectors per block.

between the eigenvalues, choosing the

A better understanding of the recognition process loe
gained by looking at thaaformation curve- the dependence
of the relevant information)(T;Y), on the representation
complexity I(T;X). The easier the task - the steeper this curve
should be. It can be seen that even by using d simansion
(80), the majority of the information about the aer can be
preserved. Furthermore, there is a correlation &éetwthe
mutual information about the speaker and the detect
performance. Still, the fact that there is no cléaree” in the
curve means that information on the speaker existsall
scales” and all dimensions.

5. Conclusions

The GIB method in particular and the IB method inegahare
shown to be efficient principled methods for impray the
performance of speaker recognition. The IB, throuith
discriminative nature, provides a subspace thatatem as
much information about the speaker as possible,lewhi
minimizing irrelevant acoustic information. It wadditionally
shown in that the classical LDA is a special cafeGtB,
where the relevance variabfds set to be the average of tke
vectors for each speaker. Even for this simple,cakere the
two variables X andY) are not from truly different sources,
significant improvement in performance was obtained
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