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Abstract 
This paper explores a novel approach for the extraction of 

relevant information in speaker recognition tasks. This 
approach uses a principled information theoretic framework - 
the Information Bottleneck method (IB). In our application, 
the method compresses the acoustic data while preserving 
mostly the relevant information for speaker identification. This 
paper focuses on a continuous version of the IB method 
known as the Gaussian Information Bottleneck (GIB). This 
version assumes that both the source and target variables are 
high dimensional multivariate Gaussian variables. The GIB 
was applied in our work to the Super Vector (SV) dimension 
reduction conundrum.  Experiments were conducted on the 
male part of the NIST SRE 2005 corpora. The GIB 
representation was compared to other dimension reduction 
techniques and to a baseline system. In our experiments, the 
GIB outperformed the baseline system; achieving a 6.1% 
Equal Error Rate (EER) compared to the 15.1% EER of a 
baseline system. 

Index Terms: Information Bottleneck method, Gaussian 
Information Bottleneck, Speaker Recognition, Super Vector 

1. Introduction 
The field of speaker recognition has developed 

significantly over the last few years with the introduction of 
the Super Vector (SV) method [1][2]. The SV approach differs 
from the classical Gaussian Mixture Model - Universal 
Background Model (UBM-GMM) [3] scheme by taking 
advantage of the symmetry that exists between the training and 
testing speech segments. Instead of using the first set only for 
training GMM distributions and the second set only for 
likelihood estimation, SVs are evaluated for both kinds of 
segments, and the similarity measure is given by a symmetric 
Euclidean distance in high-dimensional space. 

SV speaker recognition systems set the UBM as the initial 
distribution for training GMMs. For each of the training and 
testing segments a GMM is estimated using maximum a 
posteriori (MAP) adaptation. The parameters from each GMM 

are then utilized for creating the SV (x
r

) for that segment, 
namely: 

 

dj

gi

ij

ij
ijdi wx

<≤

<≤

=+⋅

0

0

σ

µ

 (1) 

where iw  is the weight of the Gaussian i, ijµ is the mean of 

the Gaussian i in the j dimension, and ijσ  is the standard 

deviation of Gaussian i in the j dimension. d is the feature 
space dimension and g is the number of Gaussians in a 

mixture. Note that the SVs have a very high dimension (equal 
to the products of the number of Guassians and the dimension 
of the features space). Given two SVs, the Euclidean distance 
between them is an estimation of the Kullback-Leibler (KL) 
divergence between their original GMM distributions [1]. In 
state of the art GMM-Support Vector Machine (GMM-SVM) 
systems [4], scores are given by the SVM, instead of using the 
distances (normalized using ZT-norm [5]) as done in this 
paper. 

Unfortunately, due to lack of training data and inter-call 
variability, the estimation of SVs tends to be inaccurate. It can 
be described as if a certain amount of noise is added to the 
correct SV. However, some level of noise reduction can be 
achieved by using a procedure for reducing the dimension of 
the SVs [3][4][5]. In this paper, a new dimension reduction 
procedure is introduced, based on the GIB method, which 
enhances the relevant information about the speaker identity, 
while minimizing the overall information. 

All speaker recognition systems described throughout this 
paper used the same acoustic features. 13 Mel-frequency 
cepstral coefficients (MFCC) and their first derivatives, 
estimated every 10ms with 25ms windows [9]. Then relevant 
frames were selected by an energy based Voice Activity 
Detector (VAD). Ultimately, a feature time warping [10] 
procedure was applied. 

2. Methods 
In this work the GIB method was applied to the speaker 
recognition SV models for the purpose of reducing the 
representation dimensionality. This section reviews the 
theoretical aspects of IB [11], its continuous application for 
multivariate Gaussian variables [12], and our new GIB 
solution for SV based speaker recognition. 

2.1. Information Bottleneck 

Each audio segment can be viewed as having two components, 
X and Y. X represents the acoustic characteristics of the audio 
signal, while Y is a representation of the classification target, 
in this case - the speaker identity. The amount of relevant 
information that X contains on Y is determined, in this method, 
by Shannon's mutual information between the two variables, 
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The goal of the IB is to find a compact representation of X, 
denoted here by the random variable T, that on the one hand 
preserves as much information as possible about the speaker's 

identity, i.e. ( )max ;
T

I T Y  , and on the other hand is as 

simple as possible ( )min ;
T

I X T . This procedure 



generalizes the classical notion of minimal  sufficient statistics 
for general random variables X and Y. The tradeoff between 
these two complementary criteria is obtained by introducing a 
positive Lagrange multiplierβ and optimizing the following 

Lagrangian with respect to a stochastic map from X to T, 
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This optimization is similar to the Rate-Distortion tradeoff 
equation in lossy compression [13]. However, in the IB case 
an emerged distortion measure results from the information 
sufficiency criteria.  

2.2. Gaussian Information Bottleneck 

In the special case where X and Y are jointly multivariate 
Gaussian distributions, the IB optimization problem is turned 
into a generalized eigenvalue problem, as developed in [12]. 
The description of GIB starts with a few basic definitions. For 

two Gaussian random variables, X and Y, let xΣ and 

yΣ denote the covariance matrices respectively. The cross 

covariance matrices of X and Y is denoted by xyΣ  and yxΣ  

and the conditional covariance, or canonical correlation matrix 

by yxΣ , defined as follows: 

 yxyxyxyx ΣΣΣ−Σ=Σ −1

.
 (4) 

Solving the IB for general continuous distributions can be 
complicated and involves an iterative solution. However, for 
the Gaussian case the information functions involve only these 
matrices and an elegant analytical solution exists. In this case, 
the optimal representation T is a linear projection of X on a 
subspace of eigenvectors of the conditional covariance 

matrix
1−ΣΣ xyx . The selected eigenvectors and their relative 

weights are determined by the tradeoff parameter β : 
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where A is the projection matrix from X to T, T=AX. The left 
eigenvectors are sorted according to their eigenvalues in an 
ascending order. The scalars α's and the critical β's, where the 
number of dimensions of the projection increases, are 
determined by the eigenvalues and eigenvectors as follows: 
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2.3. GIB for speaker recognition 

The optimal projection according to the GIB algorithm 

consists of the eigenvectors of the matrix 
1−ΣΣ xyx . In the 

speaker recognition task, the X vectors are the GMM 
supervectors of the voice segments (a 128*26 dimensional 
vector) and the Y vectors are the GMM supervectors of the 
speakers. The GMM supervector of a speaker was set to be the 
average vector of all the acoustic segments made by that 
speaker. 
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sy the GMM supervector of  the sth speaker, 

six the GMM supervector of the ith segment of the sth speaker, 

sn the number of segments attributed to the sth speaker. 

It can be seen in the following equation that under these 

special conditions the cross covariance matrices yxxy ΣΣ , are 

both equal to the speaker covariance matrix yΣ .  
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where SP is the number of speakers. By using the outcome of 
the equation (8), the optimal projection equation can be 
simplified, yielding  
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Due to the scarcity of training data, a full covariance matrix 
cannot be estimated properly. To overcome this problem and 
simplify the estimation, in the current experiments a block-
diagonal matrix was assumed [14]. This is equivalent to 
assuming no correlations between the values of X originate 
from different cepstral coefficients and no correlation between 
an MFCC and its derivative. Therefore, the size of each block 
was the number of Gaussians in the GMM. In addition, in 
these experiments only 128 Gaussians were used, fewer than 
the 1024 or 2048 commonly used in speaker recognition 
systems. 

3. Experiments 
Several sets of speaker recognition experiments were 
conducted in order to demonstrate the difference in 
performance among the several dimension reduction 
techniques. Three linear dimension reduction techniques were 
compared: Principal Components Analysis (PCA), GIB, and 
Linear Discriminant Analysis (LDA). In each dataset a 
different technique was applied and a baseline experiment was 
conducted as well. All the experiments were conducted using 
128 Gaussians per mixture. Given that the feature space was a 
26 dimensional space, the total dimension of each SV was 

332812826 =× . Each set was composed of several 
experiments differentiated by the reduced dimension of the 
SVs. The reduced dimension values that were used spanned 
from no reduction at all to a dimension that was only a small 
fragment of the original one. 



3.1. Corpora 

All the experiments were conducted on the male segments of 
the common task of the NIST SRE 2005 [15]. The background 
model was estimated from the male training segments of the 
common task of the NIST SRE 2004. A total of about 250 
segments from about 100 different speakers were used for the 
background training.  As was mentioned earlier, in the SV 
approach there was a similarity between the training and 
testing segments, each segment was processed to a single 
vector in a high dimensional space. In the same way there was 
a similarity between T -norm and Z -norm. All the segments 
(training and testing) of the male data set of the common task 
in NIST SRE 2004 were used as T -norm and Z -norm. There 
were about 700 of those segments that were made by about 
100 different speakers. These segments were used in the 

evaluation of the three matrices ),,( yxyx ΣΣΣ  as well. 

3.2. Results 

The results were compared according to two scenarios: the 
point with the best performance and a point with the low 
dimension (26*30). Performance was evaluated using 
Detection Error Tradeoff (DET) curves[16] and EERs [Table 
1-2].  

 
 

Figure 1: Best Performance Scenario. 

Figure 2: Low Dimension Scenario. 

Table 1 Best Performance Scenario. 

Algorithm Recognition 
Performance 

(EER) 

Dimension 
 

Baseline 15.1
 

26*128 
PCA 7.0 26*110 

LDA 6.1 26*100 
GIB 6.1 26*104 

Table 2 Low Dimension Scenario. 

Algorithm Recognition 
Performance (EER) 

Baseline 15.1
 

PCA 16.2 
LDA 7.3 
GIB 7.3 

 
Both LDA and GIB show an improvement over the classic SV 
with or without PCA transformation. At their best performance 
point, there is no significant difference between GIB and 
LDA– a fact that will be explained in the discussion.  

4. Discussion 
According to the results, it seems that GIB is similar to LDA 
in most performance. We will now show that there is a 
theoretical equivalence between the two methods as well 
(section 4.1). One major advantage for GIB though, is the 
ability to get an explicit expression for the information 
residing in each of the eigenvectors, and visualizing it using a 
graph called the information curve (section 4.2). 

4.1. Theoretic Comparison 

It was decided to elaborate on the comparison of the speaker 
recognition version of the GIB and the LDA method, due to 
their convincing resemblance. Theoretical comparisons among 
the other techniques used, were already explored by Vogt at el. 
[7]. 
The LDA goal is to find the eigenvectors of the matrix 

BW SS 1−  

that have the highest eigenvalues. BS is the between-class 

scatter matrix, and is defined as  yΣ . WS is the within-class 

scatter matrix and we will now prove that it is equal to yxΣ . 
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Thus, the optimal projection according to the LDA algorithm 

is the eigenvectors of the matrix yyx ΣΣ−1
 with the highest 

eigenvalues. 
In the speaker recognition version of the GIB Y (the speaker 
vector) is defined as the average of all the segments of the 
speaker. It was shown in equation (9) that in this version of 



GIB, the goal is to find the eigenvectors of the matrix 
11 −− ΣΣ−=ΣΣ xyxyx I that have the smallest eigenvalues. 

Table 3.LDA and GIB matrices. 

Algorithm Matrix 
LDA νλν

rr
=ΣΣ−

yyx
1

 

GIB T
xyx

T ωγω
rr

=ΣΣ −1
 

An eigenvector and its corresponding eigenvalue of the LDA 

matrix are denoted by λν ,
r

 and those of the GIB matrix are 

denoted by γω,
r

. 
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By placing the eigenvector ν
r

 of the LDA algorithm in the 
GIB equation, we get:  
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Therefore any eigenvector of the LDA matrix, is also an 
eigenvector of the GIB matrix, with some other eigenvalues. 
However, since there is a monotonously decreasing mapping 

1)1( −+→ λλ  between the eigenvalues, choosing the 

greatest for LDA, is exactly the same as choosing the smallest 
in GIB. Therefore, both methods will discard of exactly the 
same eigenvectors. 

4.2. Information Curve 

Figure 3: Speaker Recognition Information curve. n is 
the number of eigenvectors per block. 

A better understanding of the recognition process can be 
gained by looking at the information curve – the dependence 
of the relevant information, I(T;Y), on the representation 
complexity I(T;X). The easier the task - the steeper this curve 
should be. It can be seen that even by using a small dimension 
(80), the majority of the information about the speaker can be 
preserved. Furthermore, there is a correlation between the 
mutual information about the speaker and the detection 
performance. Still, the fact that there is no clear “knee” in the 
curve means that information on the speaker exists on “all 
scales” and all dimensions. 

5. Conclusions 
The GIB method in particular and the IB method in general are 
shown to be efficient principled methods for improving the 
performance of speaker recognition. The IB, through its 
discriminative nature, provides a subspace that contains as 
much information about the speaker as possible, while 
minimizing irrelevant acoustic information. It was additionally 
shown in that the classical LDA is a special case of GIB, 
where the relevance variable Y is set to be the average of the X 
vectors for each speaker. Even for this simple case, where the 
two variables (X and Y) are not from truly different sources, 
significant improvement in performance was obtained. 
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