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Abstract 

A lesser-known property of Hamiltonian dynamics is that it can be formally mapped to 

the Riemannian geometry of classical gravitation. Taking advantage of this property, we 

explore here the possibility that the onset of Hamiltonian chaos in the ultraviolet (UV) 

sector of field theory generates the cosmological and Fermi scales. In line with the 

geometry of fully developed chaos, these two scales reflect the cumulative contribution 

of energies stored in the fractal dimensionality of spacetime. Our findings support the 

conjecture that both Standard and the CDM models emerge as non-trivial attractors of 

the UV to infrared (IR) flow.     
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1. Introduction  

Recent decades have convincingly shown that nonintegrability and chaos are 

landmark features of nonlinear or far-of-equilibrium dynamical systems. 

Typical fingerprints of chaotic behavior include bifurcations and 

universality, the emergence of non-trivial attractors in phase-space and the 

route to turbulence of fluid-like dynamics, including Hamiltonian and 

Renormalization Group flows. Today, the science of chaos and complexity 

is a mature discipline with an array of far-reaching applications ranging 

from fundamental and applied science to engineering, medicine, social 

sciences, financial affairs, weather forecasting and internet dynamics. 

Given the ubiquity of nonlinear dynamics in foundational physics, it is truly 

surprising that, as of today and aside from a handful of exceptions [for 

instance, 5 - 10], the onset of chaos in standard cosmology and the UV sector 

of Quantum Field Theory remains insufficiently studied and understood.    

Motivated by advances in the analysis of nonintegrable systems, we have 

recently conjectured that non-equilibrium dynamics and complex behavior 

are prone to develop near or above the Fermi scale ( EWM ) [11 - 15]. This 
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regime is best characterized by the concept of non-vanishing Kolmogorov 

(K) entropy and the emergence of a spacetime having continuous 

dimensionality ( 4 1)   D . The surge of K-entropy in nonintegrable 

systems and unstable systems outside equilibrium is associated with 

increasing complexity in phase-space. A prerequisite of this process is the 

mechanism of decoherence, which drives the transition from quantum to 

classical behavior. The expectation is that global thermalization of 

instabilities occurs at the endpoint of the phase-space flow, a state 

corresponding to the onset of effective field theory [  ].  

The object of this report is to examine the surprising possibility that the 

emergence of both cosmological constant and the Fermi scale follows from 

the onset of chaos in the UV sector of Hamiltonian dynamics. The paper is 

organized as follows: next section lays out the background and underlying 

assumptions on which the analysis is built; sections three to four elaborate 

on the emergence of cosmological and the Fermi scales from the K-entropy. 

Last section summarizes the main results and suggests further 
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developments. To make the paper self-contained, the Appendix section 

includes a brief exposition on the Riemannian theory of Hamiltonian flows.    

The reader is cautioned upfront on the provisional nature of these ideas. 

Follow up studies are needed to independently validate, rebut, or build up 

this line of reasoning in a more comprehensive and robust way.  

 

2. Theoretical background and working assumptions 

An intriguing (yet far less appreciated) property of multidimensional 

nonlinear equations is that the spread of nearby geodesics on Riemannian 

manifolds, on the one hand, and the exponential separation of nearby orbits 

in phase-space, on the other, are complementary descriptions of dynamic 

instability [1, 4,  ]. 

To illustrate this point, consider a two-dimensional manifold and the Jacobi 

equation (JE) defining the separation of nearby Riemannian geodesics ( ) s  

as a function of the local Gaussian curvature of the manifold ( ) s . JE is given 

by [1, 4] 

 
2

2

( )
( ) ( ) 0

d s
s s

ds


    (1) 
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where the arclength s  plays the role of a time-like parameter. The divergence 

of the affine parameter ( ) s  along s  reflects the geodesic sensitivity to initial 

conditions. There is a pair of disjoint subspaces defining the solution space of 

(1) for solutions with exponentially expanding separation ( )s  

 
1

( ) (0) exp( 2 )
2

  s s  (2a) 

and for exponentially contracting solutions  

 
1

( ) (0) exp( 2 )
2

   s s  (2b) 

Equations (2) determine the local stability of geodesics in the following 

sense: by convention, on spherical surfaces, ( ) 0 s  and (2b) means stability, 

whereas, by (2a), hyperbolic surfaces with ( ) 0 s  mean instability.  

Secondly, recall that the transition to chaos in systems of nonlinear equations 

and iterated maps is quantified via positive Lyapunov exponents and 

nonzero K-entropy. A generic feature of these systems is that the exponential 

divergence of unstable - and possibly fluctuating - nearby geodesics is 

encoded in  
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 ( ) (0)exp[ ( ) ] , ( ) 0x s x s s s       (3) 

K-entropy is computed from the sum of all positive Lyapunov exponents 

integrated over phase-space as in  

 iK i
S d 


  ,  0i   (4) 

in which  d  stands for the differential measure of phase-space. Relations 

(1)-(3) imply that the square root of curvature in spacetime mirrors the role of 

a local Lyapunov exponent in the corresponding phase-space. This 

observation leads to the symbolic mapping  

 ( ) ( ) s s  (5) 

Retracing the footsteps of [  ], we now introduce the following assumptions 

and approximations: 

A1) The focus is on out-of-equilibrium and low-dimensional nonlinear 

systems exhibiting dissipative behavior. The rationale for choosing low-

dimensional systems echoes the center manifold theory, where a 

multivariable system of differential equations reduces in the long run to 
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a lower dimensional system of universal equations dependent on a single 

emerging variable. 

A2) Lyapunov stability is applied to geodesics having a limited extent in 

spacetime or phase-space, and can be either stable, unstable, or 

fluctuating. To characterize instability and for the sake of simplicity, we 

assume that there are n  Lyapunov exponents, of which 1n  are 

negligible in comparison with a single maximal exponent denoted as 

0 0  .  

A3) The focus is exclusively on weak and slowly varying gravitational 

fields, as typically described in introductory textbooks on General 

Relativity (GR). This assumption enables the local approximation of GR 

as a Hamiltonian (energy conserving) field theory.  

A4) In line with A3), we exclusively consider the vacuum regime of 

nearly vanishing curvature and assume that this regime is characterized 

by nonzero fluctuations in the curvature sign. Tracing Einstein’s 

equation implies that the net result of these fluctuations is a positive Ricci 

curvature and a positive cosmological constant related through 4R   [   ]. 
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3. Cosmological constant from K-entropy 

Ramping up of K-entropy ( KS ) upon lowering the observation scale   

follows from the continuous dimensional deviation of spacetime near the 

Fermi scale, as encoded in  

 
2

2

( )
( ) 4 ( ) 1


     

UV

m
D  (6) 

Here, the observation scale is taken to be dimensionless, m  is a mass 

parameter and UV  a large UV cutoff. 

Relation (6) is rooted in the dimensional regularization technique of 

perturbative Quantum Field Theory, as well as in the   expansion method 

of the Renormalization Group program [  ]. In the context of this work, the 

regime described by (6) reflects the transition to fully developed chaos and is 

characterized by both non-integrability and non-local behavior.     

The Hausdorff dimension of phase-space trajectories ( HD ), K-entropy ( KS ), 

and dimensional deviation ( ) are related through [  ] 

 
( )

]
( )

( ) ( ) log[ ( )
log ( )


   

 


    HDK
H K

S
D S  (7) 
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By (4) and on account of assumption A2), the phase space density of K 

entropy is given by 

 0

( )

( )
KdS

d




 
  (8) 

where ( )    runs with    in what represents a Liouville flow. From (7) 

and (8) we obtain  

 0

( ) ( )

( ) ( )

( )



 

  

 


 
  K HDdS

d
 (9) 

where the beta-functions of the dimensional and Liouville flow are, 

respectively, 

 ( ) , ( ) 
 

   
 

 
d d
d d

 (10) 

By analogy with the Renormalization Group equations, it is convenient to 

cast the dimensional flow as a power series, namely, 

 
1

( ) ( )j
jj

a   



  (11) 
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Taking the lowest bound value of min   and up to a first-order 

approximation, combined use of (5), (9)-(11) and A2)-A4) yields 

 1 2 min
min

)
( ) 4

( )

(




 




   H

a
D

a
 (12) 

Furthermore, under the assumption that ( ) 0   , it is apparent that (12) 

maps the minimal numerical value of dimensional parameter min 1   to the 

nonzero value of the cosmological constant  . The conservative limit of effective 

field theories matches the case min1 ( ) 0a      .   

It is worthwhile pausing for a moment to reflect upon the meaning of this 

result. As free parameter of Einstein’s equations, the cosmological constant 

written as 2
cc    denotes the energy density of classical vacuum and fixes 

the non-vanishing curvature of empty space. Relation (12) suggests that   

may be interpreted as evidence for the minimal fractality of spacetime near or 

above the Fermi scale. It is conceivable that (12) may set the stage for revisiting 

the CDM  model as embodiment of non-equilibrium thermodynamics. As 

section four attempts to show, (12) also hints to a fresh perspective on the 

mass and flavor composition of high-energy physics. 
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4. Cantor Dust and the Fermi Scale from K-entropy 

Dimensional deviation is a continuous and arbitrarily small variable, which 

may be thought of as an infinite string of component deviations as in 

 2
21 1

1
1

i i

UV

m 
 

 


   (13) 

Since the cosmological constant of (12) carries the dimension of mass 

squared, i.e. 2M     and by (13), it is tempting to speculate that  min   can 

be cast in the following form 

 2
min ,min ,min2 21 1

1
i i

UV UV

m 
  

  
 

   (14a) 

or 

 

2
,min

1
(1)im

O





  (14b) 

The string of component deviations ,mini  acts as an infinite ensemble of scalar 

fields clustered into a large-scale Cantor Dust structure arising from 

topological condensation [  ]. By (14), one concludes that, on scales larger than 
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the Fermi scale, the energy content of the cosmological constant comes from the 

cumulative contribution of energies stored in the Cantor Dust. Although a highly 

speculative scenario, this finding points nevertheless to an attractive path 

towards unifying Dark Energy and Dark Matter into a single and coherent 

framework.  

 A key observation is that the analysis developed so far is not limited to 

cosmological constant and the geometry of General Relativity (GR). With 

reference to the Appendix section, a remarkable property of classical 

Hamiltonian dynamics is that it can be formally mapped to Riemannian 

geometry. Appealing to (A2) and interpreting the kinetic terms of the 

Hamiltonian as mass parameters, enables one to turn them into Riemannian 

metric coefficients, that is,  

 2 ( ) 
   ij ij ijm g E V a  (15) 

By analogy with (13)-(14), the approach to Hamiltonian chaos above the 

Standard Model scale may be characterized by a relationship that replicates 

(14), with mass parameters replaced by (15) and with the cosmological 
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constant scale   replaced by the Fermi scale. The analogy can be further 

justified using the parallel between the geometries of GR and non-abelian 

gauge theory. According to this interpretation, the curvature tensor of GR 

maps to the field tensor of gauge theory as in [  ] 

 R F
    ;   , , , 0,1,2,3      (16) 

Furthermore, (14) and (16) suggest that the energy content of the gauge field 

vacuum must replicate the lowest lying value of Ricci curvature in empty 

space given by 4R   . One suspects that these observations recover the 

“sum-of-squares” relationship of high-energy physics, written as  

 

2
,

21
(1)

N i SM

EW

m
O

M
  (17) 

in which the sum is extended over the full mass spectrum of the Standard 

Model ( 1,2,...,i N ) [  ]. In this context, whereas   refers to the invariant 

energy density of classical vacuum, the Fermi scale EWM  relates to the 

quantum vacuum of electroweak symmetry breaking – a fundamental 
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constant of the Standard Model. The two constants are conjectured to satisfy 

the following relationship [  ] 

 
1 4

min
cc EW

EW Pl

M

M M



   (18) 

where 1 NPl
M G  is Planck’s mass, NG  Newton’s constant and 1 4

cc   . 

Combined use of (14b), (17a) and (18) reveals that the cosmological constant, 

Fermi scales, as well as the mass content of Dark Matter and the Standard 

Model, respectively, depend on each other via 

 
1 4)(EW

N

M O
G




 (19) 

One may reasonably question at this point if there is an alternative 

motivation behind (14b) and (17). The answer is likely to lie in the concept 

of generating function, a key descriptor of chaos theory applied to iterated 

maps, and defined as [  ] 

 
( )( )  

q q
j jj

q p r ,  1,2,...., 1 j n  (20a) 

subject to the normalization condition 
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 1jj
p   (20b) 

Here, jp  is the relative frequency with which the iterated map falls in the thj  

interval of the phase space, while q  and ( )q  are continuous scaling 

exponents ( q  ). In the limit of many map iterations, (20a) approaches 

unity ( ( ) 1q  ) and, in this limit, it is apparent that (14b) and (17) share the 

same universality class defined by 0, (0) 2 q .  

5. Conclusions and outlook 

We argued here that the onset of chaos in the UV region of Hamiltonian field 

theory may generate both the cosmological constant and Fermi scale. In 

particular, the minimal fractality of spacetime above the Standard Model 

scale may account for the non-vanishing curvature of empty space, as well 

as for the spontaneously broken vacuum of electroweak theory. Analysis of 

Hamiltonian chaos through Lyapunov stability and K-entropy enables a 

unified picture of the Dark Sector. In line with the geometry of fully 

developed chaos, these two scales reflect the cumulative contribution of 

energies stored in the fractal dimensionality of spacetime. Our findings back 
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up the conjecture that both Standard and the CDM models emerge as 

strange attractors of the UV to IR flow [  ]. 

 In closing, we note that our approach is consistent with modeling the 

cosmological constant as effect of neutrino oscillations: from this standpoint, 

neutrinos may be regarded as a portal leading from the fermionic sector of 

the Standard Model to the Cantor Dust picture of Dark Matter [  ]. 

APPENDIX 

Riemannian geometry of Hamiltonian flows 

A conservative system of classical fields is defined by the Hamiltonian [2-3] 

 1 2

1
( , ,..., )

2
Nij i jH a V       (A1) 

with H E  being a constant of motion. The configuration space M  of the 

system includes N  local coordinates  1 2, ,...,  N  and can be associated with 

a Riemannian metric using the substitution 

 2 ( )i j i jg E V a     (A2) 
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The minimum action principle reads 

 
( ) ( )

[ ] [ ] 0
 

     



  

 i i it t
i

L
I d dt  (A3) 

in which the kinetic energy of the system of fields takes the form 

 
1

2








i

i

L
T  (A4) 

(A3) becomes, accordingly 

 
( ) ( ) ( )

2 0ij i j
t t t

Tdt g dt ds
  

          (A5) 

It follows from (A5) that natural motions of the Hamiltonian system are 

geodesics of M , whose differential arclength is ds . The corresponding 

geodesic equation is given by 

 
2

2
0

  
 

ji k
i
j k

d d d

ds ds ds
 (A6) 

where  i
jk  represent Christoffel coefficients of the metric. 
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