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Abstract

The goal of this article is to show the derivation of the power spectrum of the
synchrotron radiation from the Volkov solution of the Dirac equation and from
S-matrix. We also generalize the Bargmann-Michel-Telegdi equation for the spin
motion in case it involves the radiation term. This equation plays the crucial role
in spin motion of protons in LHC and FERMILAB. The axion production in the
magnetic field described by the Volkov solution is discussed.
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1 Introduction

Around year 1947 Floyd Haber, a young staff member and technician in the laboratory of
prof. Pollock, visually observed radiation of electrons moving circularly in the magnetic
field of the chamber of an accelerator (Ternov, 1994). It occurred during adjustment
of cyclic accelerator-synchrotron which accelerated electrons up to 100 MeV (Elder et
al.,). The radiation was observed as a bright luminous patch on the background of
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the chamber of the synchrotron. It was clearly visible in the daylight. In this way
the “electron light” was experimentally revealed for the first time as the radiation of
relativistic electrons of large centripetal acceleration. The radiation was identified with
the Ivanenko and Pomeranchuk radiation, or with the Schwinger radiation and later was
called the synchrotron radiation since it was observed for the first time in synchrotron.
The radiation was considered as the mysterious similarly to the Roentgen mysterious
x-rays.

A number of theoretical studies on the emission of a relativistic accelerating electron
had been carried out long before the cited experiment. The first steps in this line was
treaded by Lienard (1898). He used the Larmor formula

P =
2

3

e2

c3

(
dv

dt

)2

=
2

3

e2

m2c3

(
dp

dt

)2

, (1)

and extended it to the high-velocity particles. He also received the total radiation of an
electron following a circle of an circumference 2πR.

In modern physics, Schwinger (1945, 1949) used the relativistic generalization of the
Larmor formula to get the total synchrotron radiation. Schwinger also obtained the
spectrum of the synchrotron radiation from the method which was based on the electron
work on the electromagnetic field, P = −

∫
(j · E)dx, where the intensity of electric field

he expressed as the subtraction of the retarded and advanced electric field of a moving
charge in a magnetic field, E = 1

2
(Eret − Eadv), (Schwinger, 1949).

Schott in 1907 was developing the classical theory of electromagnetic radiation of
electron moving in the uniform magnetic field. His calculation was based on the Poynting
vector. The goal of Schott was to explain the spectrum of radiation of atoms. Of course the
theory of Schott was unsuccessful because only quantum theory is adequate to explain
the emission spectrum of atoms. On the other hand the activity of Schott was not
meaningless because he elaborated the theory of radiation of charged particles moving in
the electromagnetic field. His theory appeared to be only of the academical interest for
40 years. Then, it was shown that the theory and specially his formula has deep physical
meaning and applicability. His formula is at the present time the integral part of the
every textbook on the electromagnetic field.

The classical derivation of the Schott formula is based on the Poynting vector S
(Sokolov et al. 1966)

S =
c

4π
E×H, (2)

end E and H are intensities of the electromagnetic field of an electron moving in the
constant magnetic field, where the magnetic field is in the direction of the axis z. In
this case electron moves along the circle with radius R and the electromagnetic field is
considered in the wave zone and in a point with the spherical coordinates r, θ, ϕ. In
this case it is possible to show that the nonzero components of the radiated field are
−Hθ = Eϕ, Hθ = Eθ (Sokolov et al. 1966). They are calculated from the vector potential
A which is expressed as the Fourier integral.

The circular classical trajectory of the electron is created by the Lorentz force
F = (e/c)(v × H). The trajectory is stationary when the radiative reaction is not
considered. The radiative reaction causes the transformation of the circular trajectory to
the spiral trajectory. In quantum mechanics, the trajectory is stationary when neglecting
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the interaction of an electron with the vacuum field. The interaction of an electron with
the vacuum field, causes the electron jumps from the higher energetic level to the lower
ones. In quantum electrodynamics description of the motion of electron in a homogeneous
magnetic field, the stationarity of the trajectories is broken by including the mass operator
into the wave equation. Then, it is possible from the mass operator to derive the power
spectral formula (Schwinger, 1973). Different approach is involved in the Schwinger et al.
article (1976).

It was shown that the spectral formula of the synchrotron radiation following from
the quasi-classical description of the radiation of electron moving in the magnetic field is
given by the following expression (Berestetzkii et al., 1989; (90.24)):

P (ω) =
dI

dω
= −e

2m2ω√
πε2

{∫ ∞
x

Φ(ξ)dξ +

(
2

x
+
h̄ω

ε
χx1/2

)
Φ′(x)

}
, (3)

where

x =

(
mc2

ε

)2 (
εω

ε′ω0

)2/3
d
=

(
h̄ω

ε′χ

)2/3

; ε = c
√
p2 +m2c2 (4)

and

ω0 =
v|e|H
|p|

≈ |e|H
ε

. (5)

is the basic frequency of circulating electron in the magnetic field. Φ(x) is so called the
Airy function and it will be defined later.

Let us remark that in the classical limit i.e. with h̄ω � ε, or with ε′ ≈ ε, we have
x� 1 and the second term in the round brackets of (3) is very small and equation reduces,
after insertion of ω = ω(x) from eq. (4) to the formula expressed in the form (Landau et
al., 1988; (74.13))

Il =
2e4H2

√
πc3m2

mc2

ε

√
u
[
−Φ′(u)− u

2

∫ ∞
u

Φ(u)du
]
, (6)

where

u = l2/3
(
mc2

ε

)2

, l =
ω

ω0

, (7)

and l is number of the harmonics of the circular trajectory of the electron moving in the
constant magnetic field. Let us also remark that formula (6) follows also from the Schott
formula if the Bessel functions of it are replaced by the Bessel functions for harmonics
with l� 1.

The emitted radiation corresponds to the energy loss of electron moving in the
magnetic field. According to Schwinger (1945), the energy loss is 20 eV per revolution of
an electron with energy 108 eV and radius 0.5 m.

To calculate the total radiation from the formula (3) it is necessary to integrate over
all ω from 0 to ε. However it is better to change variable using the equation (4). Using
this equation, we have h̄ω = ε − ε′ = ε − h̄ω/(χx3/2) and from this equation it may be
easy to see that
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h̄ω =

(
1− 1

1 + χx3/2

)
=

u

1 + u
; u = χx3/2. (8)

Then, we integrate from 0 to ∞. After two integration per partes of the first term in
the braces of formula (3), we get the following result (Berestetzkii et al., 1989; (90.25)):

I = −e
2m2χ2

2
√
πh̄2

∫ ∞
0

4 + 5χx3/2 + 4χ2x3

(1 + χx3/2)4
Φ′(x)xdx =

−e
2m2χ2

2
√
πh̄2

∫ ∞
0

4 + 5u+ 4u2

(1 + u)4
Φ′(z)zdz; u = χz3/2. (9)

We will show in the next text how to determine formula (9) from the Volkov solution
of the Dirac equation in the magnetic field and from the S-matrix method. From formula
(9) follows also the classical expression for the synchrotron radiation.

The opening angle of radiation is not small in case of the nonrelativistic motion. The
small opening angle is generated only with high energy electrons as a result of the validity
of special relativity optics. According to Winick (1987), if an electron is given a total
energy 5 GeV, the opening angle over which synchrotron radiation is emitted is only
0.0001 radian, or about 0.006 degree. This can be regarded as a beam with the nearly
parallel rays. This is practically the same as the laser beam situation. The wave length
of photons is from zero to infinity. If we want to produce maximal energy of photons at
the very short length of photons, it is necessary to consider the relativistic electrons.

It it possible to consider the nonrelativistic motion of a charged particle in the strong
electric and magnetic field. The trajectory is a cycloid with the very small radius and it
means that the external observer sees the synchrotron radiation from the “straight line”,
which is perpendicular to the magnetic and electric field. The most intensive radiation
is generated at the direction of “straight line” (Pardy, 2003b). The process is realized in
the atmosphere of the neutron stars where the magnetic field is extremely strong.

2 The Volkov solution of the Dirac equation in the

constant magnetic field

In order to derive the classical limit of the quantum radiation formula, we will suppose
that the motion of the Dirac electron is performed in the following four potential:

Aµ = aµϕ; ϕ = kx; k2 = 0. (10)

From equation (10), it follows that Fµν = ∂µAν − ∂νAµ = aµkν − aνkµ = const., which
means that electron moves in the constant electromagnetic field with the components E
and H. The parameters a and k can be chosen in a such a way that E = 0. So the motion
of electron is performed in the constant magnetic field.

The Volkov (1935) solution of the Dirac equation for an electron moving in a field of
a plane wave is (Berestetzkii et al., 1989; Pardy, 2003a; Pardy, 2004):

ψp =
u(p)√

2p0

[
1 + e

(γk)(γA(ϕ))

2kp

]
exp [(i/h̄)S] (11)
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and S is an classical action of an electron moving in the potential A(ϕ).

S = −px−
∫ kx

0

e

(kp)

[
(pA)− e

2
(A)2

]
dϕ. (12)

It was shown that for the potential (10) the Volkov wave function is (Berestetzkii et
al., 1989):

ψp =
u(p)√

2p0

[
1 + e

(γk)(γa)

2kp
ϕ

]
exp [(i/h̄)S] (13)

with

S = −e ap
2kp

ϕ2 + e2
a2

6kp
ϕ3 − px. (14)

During the following text we will suppose that we will work in the unit system where
c = h̄ = 1.

3 S-matrix element for photon emission

While the Larmor formula (1) involves explicitly the dependence of the radiation on the
derivative of the particle velocity over the time, the quantum field theory works only with
the matrix elements and power spectrum must be determined from the correct definition
of the matrix element in case that electron is moving in potential (10). The alternative
method can be considered and it consists in using the quantization of the Poynting vector
(2) in the differential intensity as dI = (r ·S)dΩ. However, to our knowledge, this method
was not elaborated and published. Similarly, the gravity radiation was not determined
from the general relativistic definition of the Poynting vector.

The situation in the quantum physics differs from the situation in the classical one.
The emission of photons by electron moving in the homogeneous magnetic field is the
result of the transition of electron from the stationary state with energy Ea to stationary
state with energy Eb, where Ea > Eb. The transition between stationary states is called
spontaneous, however it is stimulated by the interaction of an electron with the virtual
electromagnetic field of vacuum, or, in other words, by the interaction of electron with
virtual photons. So, it is necessary to find the interaction term of an electron with vacuum
photons and to solve the Dirac equation with this term and then to determine the matrix
elements of the transition.

The quantum field theory expressed as the source theory was used to solved the
synchrotron radiation by Schwinger (1973). In this language and methodology the original
action term for the spin-0 charged particle was supplemented by the mass operator in the
homogeneous magnetic field and it was shown that this mass operator involves as an
integral part the power spectral formula of the synchrotron radiation. Here we use the
Volkov solution of the Dirac equation and the S-matrix approach to find the probability of
emission and the intensity of the synchrotron radiation. The method is nonperturbative
because the Volkov solution of the Dirac equation can be expressed in the nonperturbative
form.

While the Feynman diagram approach requires renormalization procedure and the
Schwinger source methods requires contact terms as some form of renormalization, our
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method does not work with renormalization. The wave function of an electron involves
the total interaction of an electron with magnetic field.

The question, if the Lorentz-Dirac equation with the radiative term can be derived
from the S-matrix approach, or from the Feynman diagram approach is unanswered, and
to our knowledge it was not published. On the other hand the more simple Lorentz
equation for the charged particle motion in electromagnetic field was derived using the
WKB approximation of the Dirac equation together with the Bargmann-Michel-Telegdi
equation for the spin motion (Rafanelli and Schiller, 1964; Pardy; 1973).

It is possible to show in the quantum field theory, that the corresponding S-matrix
element which describes transition from the state ψp to ψp′ with simultaneous emission of
photon with polarization e′ and four-momentum k′µ = (k′0,k

′) = (ω′,k′) is given by the
following expression (Berestetzkii et al., 1989), with k′ → −k′, S → −S, to be in accord
with the Ritus article (Ritus, 1979):

M = e
∫
d4xψ̄p′(γe

′∗)ψp
e−ik

′x

√
2ω′

, (15)

where ψp is given by the relation

ψp = exp i

{
e

(ap)

2(kp)
ϕ2 − e2 a2

6(kp)
ϕ3 + px

}[
1 + e

(γk)(γa)

2(kp)
ϕ

]
u(p)√

2p0
(16)

and ψ̄p is the the conjugated function to ψp, or,

ψ̄p =
ū(p)√

2p0

[
1 + e

(γa)(γk)

2(kp)
ϕ

]
exp (i)

{
−e (ap)

2(kp)
ϕ2 + e2

a2

6(kp)
ϕ3 − px

}
. (17)

Afer insertion of eq. (16) and (17) into eq. (15) and putting

exp

{
i

(
αϕ2

2
− i4βϕ3

3

)}
=
∫ ∞
−∞

dseisϕA(s, α, β) (18)

with

α = e

(
ap

kp
− ap′

kp′

)
; β =

e2a2

8

(
1

kp
− 1

kp′

)
, (19)

we get (Ritus, 1979):

M = e
∫ ∞
−∞

ds√
2ω′

(2π)4δ(p+ sk − p′ − k′)ū(p′) ×

{
(γe′∗)A+ e

(
(γa)(γk)(γe′∗)

2(kp′)
+

(γe′∗)(γk)(γa)

2(kp)

)
i
∂A

∂s
+
e2a2(ke′∗)(γk)

2(kp)(kp′)

∂2A

∂s2

}
u(p). (20)

It evidently follows from eq. (18), that

A(s, α, β) =
1

2π

∫ ∞
−∞

dϕ exp

{
i

(
αϕ2

2
− 4βϕ3

3
− sϕ

)}
. (21)

The terms in∂nA/∂sn are the Fourier mapping of functions
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ϕn exp(iαϕ2/2− i4βϕ3/3). (22)

The matrix element M is analogical to the emission of photons generated by the
electron in the plane electromagnetic wave Aµ = aµ cos(kx) which was proved by Ritus
(1979), and the difference is in replacing the discrete s by the continual quantity. So the
summation over s is replaced by the integration.

Function A(s, α, β) can be expressed by the Airy function Φ(y):

A(s, α, β) =
1

π
(4β)−1/3 exp

−is α8β + i
8β

3

(
α

8β

)3
Φ(y), (23)

where the Airy function Φ(y) is defined by the equation

d2Φ

dy2
− yΦ = 0 (24)

with the solution

Φ(y) =
1

2

∫ ∞
−∞

du e
−i
(

u3

3
+yu

)
=
∫ ∞
0

du cos

(
u3

3
+ yu

)
, (25)

where in our case

y = (4β)2/3

 s

4β
−
(
α

8β

)2
 , (26)

where β ≥ 0. Landau et al. (1988) uses the Airy function expressed as Φ/
√
π.

Using the formula (21) it is easy to find the differential equation for A(s):

sA− iαA′ − 4βA′′ = 0, (27)

where A′ = ∂A/∂s,A′′ = ∂2A/∂s2.
The evaluation of the squared matrix elements, which has physical meaning of the

probability of the radiation process, involves, as can be seen, the double integral for
which we use the identity:∫ ∞

−∞
ds
∫ ∞
−∞

ds′F (s)δ(sk + p− p′ − k′)δ(s′k + p− p′ − k′) =

∫ ∞
−∞

ds
∫ ∞
−∞

ds′F (s)
δ(s− s′)
δ(0)

δ(sk + p− p′ − k′) =

V T

(2π)4

∫ ∞
−∞

ds
F (s)

δ(0)
δ(sk + p− p′ − k′). (28)

So, now, we are prepared to determine the probability of the emission of photons and
we perform it in the following section.
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4 Probability of emission of photons

Using the ingredients of the quantum field theory, we get for the probability of the emission
of one photon an electron in unit volume per unit time (Ritus, 1979):

∑
r,r′

|M |2

V T
=

(2π)5e2

δ(0)

∫ ∞
−∞

ds

2p0p′0ω
′ δ(sk + p− p′ − k′) ×

{
|pe′′∗A− ieae′′∗A′| − 2β(kk′)(|A′|2 + ReAA′′∗)

}
, (29)

where

e′′α = e′α − k′α(ke′)/(kk′); A′ = ∂A/∂s; A′′ = ∂2A/∂s2. (30)

After summation of eq. (29) over directions of polarization e′ and using differential
equation (27),

∑ |M |2/V T will be expressed only by means of |A|2 and |A′|2 + ReAA′′∗,
which can be expressed using eq. (23) in the following way:

|A|2 =
Φ2(y)

π2(4β)2/3
; |A′|2 + ReAA′′∗ =

yΦ2(y) + Φ′2(y)

π2(4β)2/3
. (31)

Then, with

x =
ea

m
, χ = − kp

m2
x, χ′ = −kp

′

m2
x, κ = −kk

′

m2
x, (32)

we have

∑
r,r′

|M |2

V T
=

2e2m2

δ(0)x2p0p′0k
′
0

∫ ∞
−∞

ds

(
2χχ′

κ

)2/3

δ(sk + p− p′ − k′) ×

−Φ2(y) +

(
2χχ′

κ

)(
1 +

κ2

2χχ′

)2/3 [
yΦ2(y) + Φ′2(y)

] . (33)

In order to obtain the probability of the emission of photon by electron, it i necessary
to integrate equation (33) over the final states d3p′d3k′(2π)−6 of the electron and photon
and the result divide by 1/2 and to average over polarizations of the initial electron.
Integration over p′ eliminates space δ-function and the time δ-function can be transformed
into the explicit Lorentz invariant form as follows:

δ(sk + p− p′ − k′)d
3p′

p′0
→ δ(sk0 + p0 − p′0 − k′0)

p′0
= −δ(s− s̃)

kp′
; s̃ =

k′p′

kp
(34)

with the use of the relation

p′0 =
√
m2 + (sk + p− k′)2. (35)

Using the equation (34) and after integration over s, we get the differential probability
of the emission of photon per unit time:

dW =
e2c

4π3xδ(0)χ′

(
2χ

u

)2/3

×
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[
−Φ2(y) +

(
2χ

u

)2/3
(

1 +
u2

2(1 + u)

)
(yΦ2(y) + Φ′2(y))

]
d3k′

k′0
, (36)

where

u =
κ

χ′
=
kk′

kp′
, c =

1

p0
. (37)

The equation (36) is evidently relativistic and gauge invariant. The further properties
are as follows. It does not depend on k′1, which is the component of the photon momentum
along the electric field E. It means it does not depend on %. We use further the transform

d3k′

k′0
=

xm2χ′u

χ(1 + u)2
d%dτdu. (38)

with the obligate relation (Ritus, 1979):∫ ∞
−∞

d% = δ(0). (39)

After integration of (36) over % and with regard to (39), we get the probability of
emission of photons in variables u, τ without dependence of the localization of the emission
the following formula:

dW =
e2m2c

2π3(1 + u)2

(
u

2χ

)1/3

×

[
−Φ2(y) +

(
2χ

u

)2/3
(

1 +
u2

2(1 + u)

)
(yΦ2(y) + Φ′2(y))

]
dudτ. (40)

The probability (40) has a dimension of cm−3s−1.
Formula (40) describes the dependence of the distribution of probability on two

variables u, τ . If we use equation

yΦ2(y) + Φ′2(y) =
1

2

d2

dy2
Φ2(y) (41)

and the transformation t = aτ 2; a =
(
u
2χ

)2/3
, dτ = dt

2
√
at

, then, we get with y = a + t
the following result

dW

du
=

e2m2c

2π3(1 + u)2
×

{
−1 +

(
2χ

u

)2/3
[
1 +

u2

2(1 + u)

]
1

2

d2

da2

}∫ ∞
0

dt√
t
Φ2(a+ t); a =

(
u

2χ

)2/3

. (42)

Now, let us use the integral transformation (Aspnes, 1966)∫ ∞
0

dt√
t
Φ2(a+ t) =

π

2

∫ ∞
22/3a

dyΦ(y). (43)

Then, we get from the formula (42)
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dW (χ, u)

du
= − e2m2c

4π2(1 + u)2
×

{∫ ∞
z

dyΦ(y) +
2

z

[
1 +

u2

2(1 + u)

]
Φ′(z)

}
; z =

(
u

χ

)2/3

. (44)

The last formula can be written easily for small and big u as follows:

dW

du
= −Φ′(0)

e2m2c

2π2

(
χ

u

)2/3

; u� 1, χ; (45)

where

Φ′(0) = − 1

31/3

∫ ∞
0

x−1/3 sinx dx = − 1

31/3

∫ ∞
0

xµ−1 sin(ax) dx|µ=2/3;a=1 =

− 1

31/3

Γ(µ)

aµ
sin

(
µπ

2

) ∣∣∣
µ=2/3;a=1

= −31/6Γ(2/3)

2
, (46)

dW

du
=

e2m2c

8π3/2u3/2
√
χ exp

(
−2u

3χ

)
; u� 1, χ. (47)

If we integrate the formula (44) over u and using the per partes method in the first
term, we get the following formula:

W (χ) = −e
2m2c

8π2
χ
∫ ∞
0

dz
5 + 7u+ 5u2√
z(1 + u)3

Φ′(z); u = χz3/2. (48)

The last formula was derived for the first time by Goldman (1964a, 1964b) by the
different way. This formula can be expressed approximately for small and big χ as follows
(Ritus, 1979):

W (χ) = −5e2m2c

8
√

3π
χ

(
1− 8

√
3

15
χ+ ...

)
; χ� 1, (49)

W (χ) = −7Γ(2/3)e2m2c

54π
(3χ)2/3

(
1− 45

28Γ(2/3)
(3χ)−2/3 + ...

)
; χ� 1. (50)

5 Intensity of radiation

Ritus (1979) proved that the probability of radiation and the intensity of radiation differs
only by the specific term beyond the integral function. So, using the Ritus proof and with
regard to eq. (8) we see that the intensity of radiation can be obtained from formula (40)
putting c/p0 → 1 and by the multiplication by the term u(1 + u)−1. We get:

dI = −e
2m2

2π3

u

(1 + u)3
×

(
u

2χ

)1/3 {
−Φ2(y) +

(
2χ

u

)2/3
(

1 +
u2

2(1 + u)

)
(yΦ2(y) + Φ′2(y))

}
dudτ. (51)
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Then the u-distribution over intensity is of the form:

dI

du
= −e

2m2

4π2

u

(1 + u)3

{∫ ∞
z

dyΦ(y) +
2

z

(
1 +

u2

2(1 + u)

)
Φ′(z))

}
; z =

(
u

χ

)2/3

. (52)

This formula is a quantum generalization of the classical expression for the spectral
distribution of radiation of an ultrarelativistic charged particle in a magnetic field (Landau
et al., 1988; (74.13)).

After integration of (52) over u and using the per partes method in the first term,
we get the formula of the total radiation of photons by electron in the constant magnetic
field. The formula is as follows (Ritus, 1979):

I = − e2m2

2
√
πh̄2

χ2
∫ ∞
0

dzz
4 + 5u+ 4u2

2(1 + u)4
Φ′(z); u = χz3/2. (53)

This formula can be transformed with u = χx3/2 to the following one:

I = −e
2m2χ2

2
√
πh̄2

∫ ∞
0

4 + 5χx3/2 + 4χ2x3

(1 + χx3/2)4
Φ′(x)xdx. (54)

The formula (54) is equivalent with the formula (3) and the formula (52) is identical
with the formula (3). There is no doubt that the Schott formula can be derived by the
formalism used in this text.

6 Discussion

We have seen how to get the quantum description of the synchrotron radiation from the
Volkov solution of the Dirac equation and from the formalism of the relativistic quantum
theory of radiation. At the same time we have shown that the quantum synchrotron
radiation leads to the classical synchrotron radiation in the classical limit.

The synchrotron radiation evidently influences the motion of the electron in acceler-
ators. The corresponding equation which describes the classical motion is so called the
Lorentz-Dirac equation, which differs from the the so called Lorentz equation only by the
additional term which describes the radiative corrections. The equation with the radiative
term is as follows (Landau et al., 1988):

m
dvµ
ds

=
e

c
Fµνv

ν + gµ, (55)

where the radiative term was derived by Landau et al. in the form (Landau et al., 1988)

gµ =
2e3

3mc3
∂Fµν
∂xα

vνvα − 2e4

3m2c5
FµαF

βαvβ +
2e4

3m2c5

(
Fαβv

β
)

(Fαγvγ) vµ. (56)

Bargmann, Michel and Telegdi (Berestetzkii, 1989;) derived so called BMT equation
for motion of spin in the electromagnetic field, in the form

daµ
ds

= 2µFµνa
ν − 2µ′vµF

νλvνaλ, (57)
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where aµ is so called axial vector describing the classical spin. It was shown by Rafanelli
and Schiller (1964), (Pardy, 1973) that this equation can be derived from the classical
limit, i.e. from the WKB solution of the Dirac equation with the anomalous magnetic
moment.

It is meaningful to consider the BMT equation with the radiative corrections to express
the influence of the synchrotron radiation on the motion of spin. To our knowledge such
equation, the generalized BMT equation, was not published and we here present the
conjecture of the form of such equation. The equation is of the following form:

daµ
ds

= 2µFµνa
ν − 2µ′vµF

νλvνaλ + g(axial)µ, (58)

where the term g(axial)µ is generated as the ”axialization”’ of the radiation term gµ. Or,

gµ =
2e3

3mc3
∂Fµν
∂xα

vνaα − 2e4

3m2c5
FµαF

βαaβ +
2e4

3m2c5

(
Fαβv

β
)

(Fαγvγ) aµ. (59)

We are aware that the axialization is not unambiguous and it is evident, that it can
be submitted for theoretical investigation. The future physics will give the answer if the
equation corresponds to physical reality. Such equation will have fundamental meaning
for the work of LHC where the synchrotron radiation influences the spin motion of protons
in LHC.

The formalism used in case of the synchrotron radiation can be also applied in the
situation where the axion is produced in the magnetic field. Axion was introduced by
Peccei and Quinn (1977) as the pseudoscalar particle. It was introduced as the logical
necessity of the correct physical theory and it means that there is the great probability
that axions will be detected for instance during the experiments on LHC.

One of the corresponding Lagrangian describing the interaction of the axion field a
with the electron field ψ is as follows (Skobelev, 1997):

L = −ic
(
ma

f

)
a(ψ̄γ5ψ), (60)

where f is related to the coupling constant.
According to Skobelev (1997) the intensity if emission of axions by the electron moving

in the constant electromagnetic magnetic field can be approximated by two formulas which
follows from the general theory.

Ia =
g2m2

π
χ4; g =

cm

f
; χ� 1;

ma

m
� χ, (61)

and/or

Ia =
7Γ(2/3)g2m2

2π313/3
χ2/3; χ� 1;

ma

m
� χ. (62)

Axion is used also to explain the absence of the electrical dipole moment of the neutron.
Axion is chargeless, spinless and interact with the ordinary matter only very weakly. If
it is not confined, then the following decay equation is valid:

n→ e+ p+ ν̄e + a, (63)
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which can be verified in experiment as the proof of the existence of axion in a sense that
axion can decay into neutrinos as follows

a→ νe + ν̄e. (64)

On the other hand if we use the plasma of particles e, p, ν̄e, a, then the inversion
equation to (88) is valid:

e+ p+ ν̄e + a→ n (65)

and this equation can be also used as the proof of the existence of axion. If we prepare
the same plasma without axions, then no neutron will be generated. It seems that these
simple experiments can be considered as a crucial ones for the proof of the existence of
axions.

The decay of neutron and axion can be considered and calculated in the electromag-
netic field as was shown by Skobelev (1997; 1999).

Khalilov et al. (1995) calculated production of the of W− and Z0 bosons by electron
in the intense electromagnetic field. For the first process they used the following matrix
element

Me→W = −i g

2
√

2

∫
d4xψ̄ν(1− γ5)γµψeφµ, (66)

where ψν , ψe, φµ are wave functions of neutrino, electron and W -boson.
In case for the production of the Z-boson Khalilov et al. used the following matrix

element

Me→Z = g̃
∫
d4xψ̄eγ

λ(gV + gAγ
5)ψeZλ. (67)

It has been calculated the probability of creation and the total cross-section to every
process.

It is evident that all interaction of particle physics occurring in the accelerators and
LHC can be immersed into the intense electromagnetic field of laser, or laser pulse or
magnetic field. The theoretical investigation can then be performed using the Volkov
solution and the S-matrix method. This will obviously become the integral part of the
future physics of elementary particles.
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