Ervin Goldfain. Derivation of Gauge Boson Masses from the Dynamics of Levy Flows

Natural Sciences / Physics / Particle physics

Submitted on: Feb 26, 2012, 18:12:04

Description: Gauge bosons are fundamental fields that mediate the electroweak interaction of leptons and quarks. The underlying mechanism explaining how gauge bosons acquire mass is neither definitively settled nor universally accepted and several competing theories coexist. The prevailing paradigm is that boson masses arise as a result of coupling to a hypothetical scalar field called the Higgs boson. Within the current range of accelerator technology, compelling evidence for the Higgs boson is missing. We discuss in this paper a derivation of boson masses that bypasses the Higgs mechanism and is formulated on the basis of complexity theory. The key premise of our work is that the dynamics of the gauge field may be described as a stochastic process caused by the short range of electroweak interaction. It is found that, if this process is driven by Levy statistics, mass generation in the electroweak sector can be naturally accounted for. Theoretical predictions are shown to agree well with experimental data.

The abstract of this article has been published in the "Intellectual Archive Bulletin" , February 2012, ISSN 1929-1329.

The Library and Archives Canada reference page:

Please visit the author's personal Web Page to learn more about this author (CV, list of publications, honors, links, etc.)

To read the article posted on Intellectual Archive web site please click the link below.

Derivation of Gauge Boson Masses from the Dynamics of Levy Flows.pdf

© 2011-2017 Shiny World Corp. All rights reserved. To reach us please send an e-mail to