Aleks Kleyn. Basis of Representation of Universal Algebra


Natural Sciences / Mathematics / Algebra

Submitted on: Jun 06, 2012, 04:47:58

Description: We say that there is a representation of the universal algebra B in the universal algebra A if the set of endomorphisms of the universal algebra A has the structure of universal algebra B. Therefore, the role of representation of the universal algebra is similar to the role of symmetry in geometry and physics. Morphism of the representation is the mapping that conserves the structure of the representation. Exploring of morphisms of the representation leads to the concepts of generating set and basis of representation. The set of automorphisms of the representation of the universal algebra forms the group. Twin representations of this group in basis manifold of the representation are called active and passive representations. Passive representation in basis manifold is underlying of concept of geometric object and the theory of invariants of the representation of the universal algebra.

The abstract of this article has been published in the "Intellectual Archive Bulletin" , June 2012, ISSN 1929-1329.

The Library and Archives Canada reference page: collectionscanada.gc.ca/ourl/res.php?url_ver=Z39.88......

To read the article posted on Intellectual Archive web site please click the link below.

Aleks_Kleyn__Basis_of_Representation_of_Universal_Algebra.pdf



© 2011-2017 Shiny World Corp. All rights reserved. To reach us please send an e-mail to support@IntellectualArchive.com