Chunyan Wang, Bernardo A. Huberman. Long Trend Dynamics in Social Media


Natural Sciences / Computer Science / Cognitive science

Submitted on: Aug 22, 2012, 21:25:35

Description: A main characteristic of social media is that its diverse content, copiously generated by both standard outlets and general users, constantly competes for the scarce attention of large audiences. Out of this flood of information some topics manage to get enough attention to become the most popular ones and thus to be prominently displayed as trends. Equally important, some of these trends persist long enough so as to shape part of the social agenda. How this happens is the focus of this paper. By introducing a stochastic dynamical model that takes into account the user's repeated involvement with given topics, we can predict the distribution of trend durations as well as the thresholds in popularity that lead to their emergence within social media. Detailed measurements of datasets from Twitter confirm the validity of the model and its predictions.

The abstract of this article will be published in the August 2012 issue of "Intellectual Archive Bulletin", ISSN 1929-1329.

The Library and Archives Canada reference page: collectionscanada.gc.ca/ourl/res.php?url_ver=Z39.88......

To read the article posted on Intellectual Archive web site please click the link below.

Bernardo_Huberman__Long_Trend_Dynamics_in_Social_Media.pdf



© 2011-2017 Shiny World Corp. All rights reserved. To reach us please send an e-mail to support@IntellectualArchive.com