Chiara Marcolla, Emmanuela Orsini, Massimiliano Sala. Improved decoding of affine-variety codes

Natural Sciences / Mathematics / Algebra

Submitted on: Sep 18, 2012, 18:12:55

Description: General error locator polynomials are polynomials able to decode any correctable syndrome for a given linear code. Such polynomials are known to exist for all cyclic codes and for a large class of linear codes. We provide some decoding techniques for affine-variety codes using some multidimensional extensions of general error locator polynomials. We prove the existence of such polynomials for any correctable affine-variety code and hence for any linear code. We propose two main different approaches, that depend on the underlying geometry. We compute some interesting cases, including Hermitian codes. To prove our coding theory results, we develop a theory for special classes of zero-dimensional ideals, that can be considered generalizations of stratified ideals. Our improvement with respect to stratified ideals is twofold: we generalize from one variable to many variables and we introduce points with multiplicities.

The abstract of this article will be published in the September 2012 issue of "Intellectual Archive Bulletin", ISSN 1929-1329.

The Library and Archives Canada reference page:

To read the article posted on Intellectual Archive web site please click the link below.


© 2011-2017 Shiny World Corp. All rights reserved. To reach us please send an e-mail to