G. Contopoulos, N. Delis, C. Efthymiopoulos. Order in de Broglie - Bohm quantum mechanics

Natural Sciences / Physics / Quantum field theory

Submitted on: Oct 10, 2012, 18:27:41

Description: A usual assumption in the so-called {it de Broglie - Bohm} approach to quantum dynamics is that the quantum trajectories subject to typical 'guiding' wavefunctions turn to be quite irregular, i.e. {it chaotic} (in the dynamical systems' sense). In the present paper, we consider mainly cases in which the quantum trajectories are {it ordered}, i.e. they have zero Lyapunov characteristic numbers. We use perturbative methods to establish the existence of such trajectories from a theoretical point of view, while we analyze their properties via numerical experiments. Using a 2D harmonic oscillator system, we first establish conditions under which a trajectory can be shown to avoid close encounters with a moving nodal point, thus avoiding the source of chaos in this system. *** Published in J. Phys. A 45, 165301 ***

The abstract of this article will be published in the October 2012 issue of "Intellectual Archive Bulletin", ISSN 1929-1329.

The Library and Archives Canada reference page: collectionscanada.gc.ca/ourl/res.php?url_ver=Z39.88......

To read the article posted on Intellectual Archive web site please click the link below.


© Shiny World Corp., 2011-2018. All rights reserved. To reach us please send an e-mail to support@IntellectualArchive.com