A. L. Onishchik, E. G. Vishnyakova. Locally free sheaves on complex supermanifolds


Natural Sciences / Mathematics / Differential equations

Submitted on: Apr 11, 2012, 06:55:17

Description: An important part of the classical theory of real or complex manifolds is the theory of vector bundles. With any vector bundle over a manifold (M,F) the sheaf of its (smooth, real analytic or complex analytic) sections is associated which is a locally free sheaf of F-modules, and in this way all the locally free sheaves of F-modules over (M,F) can be obtained. In the present paper, locally free sheaves of O-modules over a complex analytic supermanifold (M,O) are studied. Given a locally free sheaf E of O-modules over a complex analytic supermanifold (M,O), we construct a locally free sheaf over the retract of (M,O) which is called the retract of E. Our first result is a classification of locally free sheaves of modules which have a given retract in terms of non-abelian 1-cohomology. Then we study locally free sheaves of modules over projective superspaces. A spectral sequence which connects the cohomology with values in a locally free sheaf of modules with the cohomology with values in its retract is constructed.

The abstract of this article has been published in the "Intellectual Archive Bulletin" , April 2012, ISSN 1929-1329.

The Library of Congress (USA) reference page : http://lccn.loc.gov/2012210064.
The Library and Archives Canada reference page: collectionscanada.gc.ca/ourl/res.php?url_ver=Z39.88......

To read the article posted on Intellectual Archive web site please click the link below.

Onishchik__Vishnyakova_Locally_free_sheaves.pdf



© 2011-2017 Shiny World Corp. All rights reserved. To reach us please send an e-mail to support@IntellectualArchive.com