Sivan Sabato, Naftali Tishby. Multi-instance Learning with Any Hypothesis Class


Natural Sciences / Computer Science / Analysis of algorithms

Submitted on: Aug 24, 2012, 19:09:04

Description: In the supervised learning setting termed Multiple-Instance Learning (MIL), the examples are bags of instances, and the bag label is a function of the labels of its instances. Typically, this function is the Boolean OR. The learner observes a sample of bags and the bag labels, but not the instance labels that determine the bag labels. The learner is then required to emit a classification rule for bags based on the sample. MIL has numerous applications, and many heuristic algorithms have been used successfully on this problem, each adapted to specific settings or applications. In this work we provide a unified theoretical analysis for MIL, which holds for any underlying hypothesis class, regardless of a specific application or problem domain. We show that the sample complexity of MIL is only poly-logarithmically dependent on the size of the bag, for any underlying hypothesis class. In addition, we introduce a new PAC-learning algorithm for MIL, which uses a regular supervised learning algorithm as an oracle.

The abstract of this article will be published in the August 2012 issue of "Intellectual Archive Bulletin", ISSN 1929-1329.

The Library and Archives Canada reference page: collectionscanada.gc.ca/ourl/res.php?url_ver=Z39.88......

To read the article posted on Intellectual Archive web site please click the link below.

Naftali_Tishby__Multi-Instance_Learning.pdf



© 2011-2017 Shiny World Corp. All rights reserved. To reach us please send an e-mail to support@IntellectualArchive.com